FREE BOOKS

Author's List




PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  
ed spherical aberration, and to it is due the want of distinctness which is frequently noticed around the edges of pictures taken in the camera. To secure a camera with a flat, sharp, field, should be the object of every operator; and, in a measure, this constitutes the great difference in cameras manufactured in this country. Spherical aberration is overcome by proper care in the formation of the lens: "It can be shown upon mathematical data that a lens similar to that given in the following diagram--one surface of which is a section of an ellipse, and the other of a circle struck from the furthest of the two foci of that ellipse--produces no aberration. "At the earliest period of the employment of the camera obscura, a double-convex lens was used to produce the image; but this form was soon abandoned, on account of the spherical aberration so caused. Lenses for the photographic camera are now always ground of a concavo-convex form, or meniscus, which corresponds more nearly to the accompanying diagram." [Illustration: Fig. 11 (amdg_11.gif)] Chromatic Aberration is another difficulty that opticians have to contend with in the manufacturing of lenses. It will be remembered, that in a former page (133) a beam of light is decomposed by passing through a glass prism giving seven distinct colors--red, orange, yellow, green, blue, indigo and violet. Now, as has been said before, the dissimilar rays having an unequal degree of refrangibility, it will be impossible to obtain a focus by the light passing through a double-convex lens without its being fringed with color. Its effect will be readily understood by reference to the accompanying cut. [Illustration: Fig. 8b (amdg_8b.gif)] If L L be a double convex-lens, and R R R parallel rays of white light, composed of the seven colored rays, each having a different index of refraction, they cannot be refracted to one and the same point; the red rays, being the least refrangible, will be bent to r, and the violet rays, being the most refrangible, to v: the distance v r constitutes the chromatic aberration, and the circle, of which the diameter is a l, the place or point of mean refraction, and is called the circle of least aberration. If the rays of the sun are refracted by means of a lens, and the image received on a screen placed between C and o, so as to cut the cone L a l L, a luminous circle will be formed on the paper, only surrounded by a red border, becaus
PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  



Top keywords:

aberration

 

camera

 

convex

 

circle

 

double

 

accompanying

 

ellipse

 

refracted

 

refraction

 

refrangible


passing

 

violet

 
diagram
 

Illustration

 

spherical

 
constitutes
 

fringed

 

secure

 

effect

 
readily

parallel

 

pictures

 

understood

 

reference

 
indigo
 

refrangibility

 

impossible

 
obtain
 

degree

 

unequal


dissimilar

 

composed

 
screen
 

received

 

called

 

surrounded

 

border

 
becaus
 
luminous
 

formed


frequently

 

noticed

 

yellow

 

distinctness

 

chromatic

 

diameter

 

distance

 
colored
 

object

 

abandoned