FREE BOOKS

Author's List




PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  
is made colder, both before and after expansion, than any that had gone before. This intensification of cooling goes on until the expansion-temperature is far lower than it was at starting; and if the apparatus be well arranged the effect is so powerful that even the smaller amount of cooling due to the free expansion of gas through a throttle-valve, though pronounced by Siemens and Coleman incapable of being utilized, may be made to liquefy air without using other refrigerants." So well is this principle carried out in Dr. Hamp-son's apparatus for liquefying air that compressed air passing into the coil at ordinary temperature without other means of refrigeration begins to liquefy in about six minutes--a result that seems almost miraculous when it is understood that the essential mechanism by which this is brought about is contained in a cylinder only eighteen inches long and seven inches in diameter. As has been said, it was by adopting this principle of self-intensive refrigeration that Professor Dewar was able to liquefy hydrogen. More recently the same result has been attained through use of the same principle by Professor Ramsay and Dr. Travers at University College, London, who are to be credited also with first publishing a detailed account of the various stages of the process. It appears that the use of the self-intensification principle alone is not sufficient with hydrogen as it is with the less volatile gases, including air, for the reason that at all ordinary temperatures hydrogen does not cool in expanding, but actually becomes warmer. It is only after the compressed hydrogen has been cooled by immersion in refrigerating media of very low temperature that this gas becomes amenable to the law of cooling on expansion. In the apparatus used at University College the coil of compressed hydrogen is passed successively through (1) a jar containing alcohol and solid carbonic acid at a temperature of--80 deg. Centigrade; (2) a chamber containing liquid air at atmospheric pressure, and (3) liquid air boiling in a vacuum bringing the temperature to perhaps 2050 Centigrade before entering the Hampson coil, in which expansion and the self-intensive refrigeration lead to actual liquefaction. With this apparatus Dr. Travers succeeded in producing an abundant quantity of liquid hydrogen for use in the experiments on the new gases that were first discovered in the same laboratory through the experiments on liquid air-
PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  



Top keywords:

hydrogen

 

temperature

 
expansion
 

liquid

 

principle

 

apparatus

 

refrigeration

 
compressed
 

liquefy

 

cooling


inches

 

Centigrade

 

University

 
result
 
ordinary
 

experiments

 

intensification

 
College
 

Travers

 

intensive


Professor
 

appears

 
cooled
 

warmer

 

volatile

 

stages

 

account

 

expanding

 

detailed

 
reason

sufficient

 

temperatures

 

including

 
process
 

immersion

 
passed
 
bringing
 

entering

 

vacuum

 
boiling

atmospheric

 
pressure
 
Hampson
 

abundant

 

producing

 

succeeded

 

actual

 
liquefaction
 
chamber
 

quantity