FREE BOOKS

Author's List




PREV.   NEXT  
|<   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317  
318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   >>   >|  
ed and in the case of some animals altogether prevented. For example, human blood kept at body temperature clots in three minutes, while if allowed to cool to room temperature the first sign of clotting may not make its appearance until eight minutes after its removal from the body. The process of clotting is also considerably accelerated by making the blood flow in a thin stream over a wide surface. The full completion of the process occupies some time if the blood be kept quiet, but ultimately the whole mass of the blood becomes converted into a solid. At this stage the containing vessel may be inverted without any drop of fluid escaping. A short time after this stage has been reached drops of a yellow fluid appear upon the surface and, increasing in size and number, run together to form a layer of fluid separated from the clot. This fluid is termed _serum_; its appearance is due to the contraction of the clot, which thus squeezes out the fluid from between its solid constituents. Contraction continues for about twenty-four hours, at the end of which time a large quantity (one-third or more of the total volume) of serum may have been separated. The clot contracts uniformly, thus preserving throughout the same general shape as that of the vessel in which the blood has been collected. Finally the clot swims freely in the serum which it has expressed. The cause of the clot formation has been found to be the precipitation of a solid from the liquid plasma of the blood. This solid is in the form of very minute threads and hence is termed _fibrin_. The threads traverse the mass of blood in every possible direction, interlacing and thus confining in their meshes all the solid elements of the blood. Soon after their deposition they begin to contract, and as the meshwork they form is very minute they carry with them all the corpuscles of the blood. These with the fibrin form the shrunken clot. If the rate at which blood clots be retarded either by cooling or by some other process the corpuscles may have time to settle, partially or completely, in which case distinct layers may form. The lowermost of these contains chiefly the red corpuscles, the second layer may be grey owing to the high percentage of leucocytes present, while a third, marked by opalescence only, may be very rich in platelets. Above these a clear layer of fluid may be found. This is _plasma_. The formation of these layers depends solely upon the rate of sed
PREV.   NEXT  
|<   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317  
318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   >>   >|  



Top keywords:

corpuscles

 

process

 
surface
 

termed

 

fibrin

 
separated
 

temperature

 

vessel

 

appearance

 

clotting


formation

 

plasma

 
minute
 

threads

 
minutes
 
layers
 
general
 

confining

 

interlacing

 

direction


liquid

 

collected

 
expressed
 

Finally

 

precipitation

 

freely

 
traverse
 

percentage

 

leucocytes

 

present


chiefly

 

marked

 

opalescence

 

depends

 

solely

 

platelets

 

lowermost

 
meshwork
 

contract

 

elements


deposition

 

shrunken

 
partially
 
completely
 

distinct

 

settle

 

retarded

 
cooling
 

meshes

 

contraction