FREE BOOKS

Author's List




PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  
m a solid to a liquid condition. Here, then, from the realm of heat we have another argument in favour of the fact that Aether is gravitative, and therefore possesses mass and inertia. In the experiment of reducing the iron ball from a liquid state, so to speak, to a vaporous condition, we have practically a continuation of the same process, only that greater heat or greater aetherial motion is required, and whereas in the previous experiment the molecules of the ball were acted upon, in this case the atoms are more directly acted upon by the Aether waves. In all these processes it suggests itself to me that the aetherial atmosphere must take its share in the expansion and transformation of the liquid form into a gaseous form, or the solid into a liquid form. Taking the analogy of our atmosphere in its relation to the earth, we know that when heat is absorbed by it, it expands, the result being that a greater pressure is exerted by the expanding atmosphere, than would be exerted if it remained at the same temperature all the time. If, therefore, each atom has an aetherial atmosphere, which is capable of expansion, then the effect of the absorbed aetherial motion of the heat waves on each atomic atmosphere must be to expand it, and thus there will be a pressure _away from_ the atom, because of the increased elasticity acquired by the heated aetherial atmosphere. So that the expansion of the liquid is due to the increased elasticity of the aetherial atomic atmosphere, which has been expanded by heat, and which exerts an increased pressure on neighbouring atoms, thus seeking to push them farther away from each other. There are other motions of the atoms themselves in addition to this to be considered, but I am now seeking to show only the effect of the aetherial atmosphere of each atom upon the neighbouring atoms. This would give each atom a larger sphere of freedom in which to move, and that state would then be called a gaseous and not a liquid one. This assumption of the part which the aetherial atmosphere plays in the expansion of a body is therefore in agreement with Professor Challis' theory of heat already referred to, in which he states that heat gives rise to aetherial vibrations which act repulsively on the neighbouring atoms. In further confirmation of the existence of these aetherial atmospheres that exist around atoms, I would like to draw the attention of the reader to a theory of heat given to the world by R
PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  



Top keywords:

aetherial

 

atmosphere

 

liquid

 

expansion

 
greater
 
neighbouring
 

increased

 

pressure

 

theory

 

absorbed


gaseous

 

exerted

 

seeking

 

experiment

 

effect

 

Aether

 

condition

 
elasticity
 

atomic

 

motion


motions
 
expanded
 

farther

 

addition

 

exerts

 

considered

 

agreement

 
confirmation
 

existence

 

atmospheres


repulsively

 
vibrations
 

reader

 
attention
 

states

 

assumption

 
called
 
sphere
 

freedom

 

referred


Challis

 

Professor

 

larger

 

required

 

process

 

continuation

 
vaporous
 

practically

 
previous
 

molecules