FREE BOOKS

Author's List




PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  
ke of simplicity we have taken the two extremes only. You observe that the point R, in which the red rays meet, is much further from the lens than is V, the meeting-point of the violet rays. A photographer very seldom has to take a subject in which there are not objects of several different colours, and it is obvious that if he used a simple lens like that in Fig. 111 and got his red objects in good focus, the blue and green portions of his picture would necessarily be more or less out of focus. [Illustration: FIG. 111.] [Illustration: FIG. 112.] This defect can fortunately be corrected by the method shown in Fig. 112. A _compound_ lens is needed, made up of a _crown_ glass convex element, B, and a concave element, A, of _flint_ glass. For the sake of illustration the two parts are shown separated; in practice they would be cemented together, forming one optical body, thicker in the centre than at the edges--a meniscus lens in fact, since A is not so concave as B is convex. Now, it was discovered by a Mr. Hall many years ago that if white light passed through two similar prisms, one of flint glass the other of crown glass, the former had the greater effect in separating the spectrum colours--that is, violet rays were bent aside more suddenly compared with the red rays than happened with the crown-glass prism. Look at Fig. 112. The red rays passing through the flint glass are but little deflected, while the violet rays turn suddenly outwards. This is just what is wanted, for it counteracts the unequal inward refraction by B, and both sets of rays come to a focus in the same plane. Such a lens is called _achromatic_, or colourless. If you hold a common reading-glass some distance away from large print you will see that the letters are edged with coloured bands, proving that the lens is not achromatic. A properly corrected photographic lens would not show these pretty edgings. Colour correction is necessary also for lenses used in telescopes and microscopes. SPHERICAL ABERRATION. A lens which has been corrected for colour is still imperfect. If rays pass through all parts of it, those which strike it near the edge will be refracted more than those near the centre, and a blurred focus results. This is termed _spherical aberration_. You will be able to understand the reason from Figs. 113 and 114. Two rays, A, are parallel to the axis and enter the lens near the centre (Fig. 113). These meet in one plane. Two ot
PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  



Top keywords:

centre

 
violet
 
corrected
 

achromatic

 
Illustration
 
convex
 
element
 

concave

 

objects

 

colours


suddenly
 

distance

 

deflected

 

passing

 
reading
 
refraction
 

colourless

 

letters

 

called

 
unequal

common
 

counteracts

 

wanted

 

outwards

 
blurred
 

results

 

termed

 
spherical
 

refracted

 
strike

aberration
 

parallel

 

understand

 

reason

 

imperfect

 
pretty
 

edgings

 

photographic

 

properly

 
coloured

proving

 

Colour

 

correction

 

SPHERICAL

 
ABERRATION
 

colour

 

microscopes

 
telescopes
 

lenses

 

portions