FREE BOOKS

Author's List




PREV.   NEXT  
|<   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441  
442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   >>   >|  
some distance. There are many ways in which breccias may originate. Some are formed by ordinary processes of atmospheric erosion; frost, rain and gravity break up exposed surfaces of rock and detach pieces of all sizes; in this way screes are formed at the bases of cliffs, and barren mountain-tops are covered with broken debris. If such accumulations gather and are changed into hard rock by pressure and other indurating agencies they make typical breccias. Conglomerates often pass into rocks of this type, the difference being merely that the fragments are of purely local origin, and are unworn because they have not been transported. In caves breccias of limestone are produced by the collapse of part of the roof, covering the floor with broken masses. Coral reefs often contain extensive areas of limestone breccia, formed of detached pieces of rock which have been dislodged from the surface and have been carried down the steep external slopes of the reef. Volcanic breccias are very common near active or extinct craters, as sudden outbursts of steam bear fragments from the older rocks and scatter them over the ground. Another group of breccias is due to crushing; these are produced in fissures, faults and veins, below the surface, and maybe described as "crush-breccias" and "friction-breccias." Very important and well-known examples of this class occur as veinstones, which may be metalliferous or not. A fissure is formed, probably by slight crustal movements, and is subsequently filled with material deposited from solution (quartz, calcite, barytes, &c.). Very often displacement of the walls again takes place, and the infilling or "veinstone" is torn apart and brecciated. It may then be cemented together by a further introduction of mineral matter, which may be the same as that first deposited or quite different. In important veins this process is often repeated several times: detached pieces of the country rock are mingled with the shattered veinstone, and generally experience alteration by the percolating mineral solutions. Other crush-breccias occurring on a much larger scale are due to the folding of strata which have unequal plasticities. If, for example, shales and sandstones are bent into a series of arches, the sandstones being harder and more resistant will tend to crack, while the shales, which are soft and flow under great pressures, are injected into the crevices and separate the broken pieces from one anothe
PREV.   NEXT  
|<   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441  
442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   >>   >|  



Top keywords:
breccias
 

pieces

 

formed

 

broken

 

mineral

 

produced

 
deposited
 
important
 

veinstone

 
detached

surface

 

limestone

 
sandstones
 

fragments

 

shales

 

cemented

 

brecciated

 

infilling

 
subsequently
 
metalliferous

veinstones

 

fissure

 
friction
 
examples
 

slight

 

crustal

 

barytes

 
displacement
 

calcite

 

quartz


movements

 

filled

 

material

 

solution

 
process
 

harder

 
arches
 

resistant

 
series
 

unequal


plasticities

 

crevices

 

injected

 
separate
 

anothe

 

pressures

 

strata

 

folding

 

repeated

 
country