FREE BOOKS

Author's List




PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  
pear dark, for the light would be stopped by a tooth, either at starting or at returning, continually. At higher speeds of rotation some light would reappear, and at lower speeds it would also reappear; by noticing, therefore, the precise speed at which there was constant eclipse the velocity of light could be determined. [Illustration: FIG. 73.--Diagram of eye looking at a light reflected in a distant mirror through the teeth of a revolving wheel.] This experiment has now been made in a highly refined form by Fizeau, and repeated by M. Cornu with prodigious care and accuracy. But with these recent matters we have no concern at present. It may be instructive to say, however, that if the light had to travel two miles altogether, the wheel would have to possess 450 teeth and to spin 100 times a second (at the risk of flying to pieces) in order that the ray starting through any one of the gaps might be stopped on returning by the adjacent tooth. Well might the velocity of light be called instantaneous by the early observers. An ordinary experiment seemed (and was) hopeless, and light was supposed to travel at an infinite speed. But a phenomenon was noticed in the heavens by a quick-witted and ingenious Danish astronomer, which was not susceptible of any ordinary explanation, and which he perceived could at once be explained if light had a certain rate of travel--great, indeed, but something short of infinite. This phenomenon was connected with the satellites of Jupiter, and the astronomer's name was Roemer. I will speak first of the observation and then of the man. [Illustration: FIG. 74.--Fizeau's wheel, shewing the appearance of distant image seen through its teeth. 1st, when stationary, next when revolving at a moderate speed, last when revolving at the high speed just sufficient to cause eclipse.] Jupiter's satellites are visible, precisely as our own moon is, by reason of the shimmer of sunlight which they reflect. But as they revolve round their great planet they plunge into his shadow at one part of their course, and so become eclipsed from sunshine and invisible to us. The moment of disappearance can be sharply observed. Take the first satellite as an example. The interval between successive eclipses ought to be its period of revolution round Jupiter. Observe this period. It was not uniform. On the average it was 42 hours 47 minutes, but it seemed to depend on the time of year. When Roemer observed in
PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  



Top keywords:

travel

 

Jupiter

 

revolving

 

experiment

 

ordinary

 

observed

 

distant

 

Fizeau

 

infinite

 

speeds


Roemer

 

reappear

 

astronomer

 
returning
 

starting

 

satellites

 
stopped
 
period
 

Illustration

 

velocity


phenomenon

 

eclipse

 
connected
 

sufficient

 

visible

 

appearance

 

shewing

 

precisely

 

moderate

 

stationary


observation

 

eclipses

 

revolution

 

Observe

 

successive

 

satellite

 

interval

 

uniform

 

depend

 

minutes


average

 

sharply

 

planet

 
plunge
 

revolve

 

reflect

 

reason

 

shimmer

 
sunlight
 
shadow