FREE BOOKS

Author's List




PREV.   NEXT  
|<   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247  
248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   >>   >|  
ion and violently explosive energy are demonstrated, seemed to single it out as a substance eminently calculated to fulfil the conditions necessary to the production of an intense wave of sound. What those conditions are we shall now more particularly enquire, calling to our aid a brief but very remarkable paper, published by Professor Stokes in the 'Philosophical Magazine' for 1868. The explosive force of gunpowder is known to depend on the sudden conversion of a solid body into an intensely heated gas. Now the work which the artillerist requires the expanding gas to perform is the displacement of the projectile, besides which it has to displace the air in front of the projectile, which is backed by the whole pressure of the atmosphere. Such, however, is not the work that we want our gunpowder to perform. We wish to transmute its energy not into the mere mechanical translation of either shot or air, but into vibratory motion. We want _pulses_ to be formed which shall propagate themselves to vast distances through the atmosphere, and this requires a certain choice and management of the explosive material. A sound-wave consists essentially of two parts--a condensation and a rarefaction. Now air is a very mobile fluid, and if the shock imparted to it lack due promptness, the wave is not produced. Consider the case of a common clock pendulum, which oscillates to and fro, and which might be expected to generate corresponding pulses in the air. When, for example, the bob moves to the right, the air to the right of it might be supposed to be condensed, while a partial vacuum might be supposed to follow the bob. As a matter of fact, we have nothing of the kind. The air particles in front of the bob retreat so rapidly, and those behind it close so rapidly in, that no sound-pulse is formed. The mobility of hydrogen, moreover, being far greater than that of air, a prompter action is essential to the formation of sonorous waves in hydrogen than in air. It is to this rapid power of readjustment, this refusal, so to speak, to allow its atoms to be crowded together or to be drawn apart, that Professor Stokes, with admirable penetration, refers the damping power, first described by Sir John Leslie, of hydrogen upon sound. A tuning-fork which executes 256 complete vibrations in a second, if struck gently on a pad and held in free air, emits a scarcely audible note. It behaves to some extent like the pendulum bob just r
PREV.   NEXT  
|<   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247  
248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   >>   >|  



Top keywords:

hydrogen

 

explosive

 

projectile

 

gunpowder

 

perform

 

requires

 

rapidly

 

formed

 
supposed
 
pendulum

pulses

 

atmosphere

 
conditions
 

energy

 

Stokes

 

Professor

 

expected

 
retreat
 

behaves

 
scarcely

audible

 
mobility
 

particles

 

generate

 

extent

 

partial

 

condensed

 

vacuum

 

follow

 

matter


crowded
 

Leslie

 
tuning
 

damping

 

refers

 

penetration

 

admirable

 

executes

 

essential

 

gently


struck

 

action

 

greater

 

prompter

 

formation

 

sonorous

 
readjustment
 

refusal

 

complete

 

vibrations