FREE BOOKS

Author's List




PREV.   NEXT  
|<   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78  
79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>  
pass now to the consideration of other sections of the crystal, and of the refractions there produced, on which, as will be seen, some other very remarkable phenomena depend. Let ABH be a parallelepiped of crystal, and let the top surface AEHF be a perfect rhombus, the obtuse angles of which are equally divided by the straight line EF, and the acute angles by the straight line AH perpendicular to FE. The section which we have hitherto considered is that which passes through the lines EF, EB, and which at the same time cuts the plane AEHF at right angles. Refractions in this section have this in common with the refractions in ordinary media that the plane which is drawn through the incident ray and which also intersects the surface of the crystal at right angles, is that in which the refracted ray also is found. But the refractions which appertain to every other section of this crystal have this strange property that the refracted ray always quits the plane of the incident ray perpendicular to the surface, and turns away towards the side of the slope of the crystal. For which fact we shall show the reason, in the first place, for the section through AH; and we shall show at the same time how one can determine the refraction, according to our hypothesis. Let there be, then, in the plane which passes through AH, and which is perpendicular to the plane AFHE, the incident ray RC; it is required to find its refraction in the crystal. [Illustration] 37. About the centre C, which I suppose to be in the intersection of AH and FE, let there be imagined a hemi-spheroid QG_qg_M, such as the light would form in spreading in the crystal, and let its section by the plane AEHF form the Ellipse QG_qg_, the major diameter of which Q_q_, which is in the line AH, will necessarily be one of the major diameters of the spheroid; because the axis of the spheroid being in the plane through FEB, to which QC is perpendicular, it follows that QC is also perpendicular to the axis of the spheroid, and consequently QC_q_ one of its major diameters. But the minor diameter of this Ellipse, G_g_, will bear to Q_q_ the proportion which has been defined previously, Article 27, between CG and the major semi-diameter of the spheroid, CP, namely, that of 98,779 to 105,032. Let the line N be the length of the travel of light in air during the time in which, within the crystal, it makes, from the centre C, the spheroid QC_qg_M. Then having drawn CO
PREV.   NEXT  
|<   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78  
79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>  



Top keywords:

crystal

 

spheroid

 

perpendicular

 

section

 

angles

 

diameter

 
incident
 

refractions

 

surface

 

refraction


centre
 

diameters

 

Ellipse

 

refracted

 

passes

 

straight

 

travel

 

length

 
intersection
 

suppose


imagined

 
spreading
 

defined

 

Illustration

 

proportion

 
previously
 

Article

 
necessarily
 

divided

 

equally


rhombus

 

obtuse

 

hitherto

 

Refractions

 

common

 

considered

 

perfect

 
produced
 

sections

 

consideration


parallelepiped
 
depend
 

phenomena

 
remarkable
 
ordinary
 
reason
 

determine

 

required

 

hypothesis

 

strange