FREE BOOKS

Author's List




PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  
ch an engine is entirely practicable. Indeed, working motors of one-half this weight per horse-power (9 lbs. per horse-power) have been constructed by several different builders. Increasing the speed of our machine from 24 to 33 miles per hour reduced the total horizontal pressure from 40 to about 35 lbs. This was quite an advantage in gliding, as it made it possible to sail about 15 per cent farther with a given drop. However, it would be of little or no advantage in reducing the size of the motor in a power-driven machine, because the lessened thrust would be counterbalanced by the increased speed per minute. Some years ago Professor Langley called attention to the great economy of thrust which might be obtained by using very high speeds, and from this many were led to suppose that high speed was essential to success in a motor-driven machine. But the economy to which Professor Langley called attention was in foot pounds per mile of travel, not in foot pounds per minute. It is the foot pounds per minute that fixes the size of the motor. The probability is that the first flying machines will have a relatively low speed, perhaps not much exceeding 20 miles per hour, but the problem of increasing the speed will be much simpler in some respects than that of increasing the speed of a steamboat; for, whereas in the latter case the size of the engine must increase as the cube of the speed, in the flying machine, until extremely high speeds are reached, the capacity of the motor increases in less than simple ratio; and there is even a decrease in the fuel per mile of travel. In other words, to double the speed of a steamship (and the same is true of the balloon type of airship) eight times the engine and boiler capacity would be required, and four times the fuel consumption per mile of travel: while a flying machine would require engines of less than double the size, and there would be an actual decrease in the fuel consumption per mile of travel. But looking at the matter conversely, the great disadvantage of the flying machine is apparent; for in the latter no flight at all is possible unless the proportion of horse-power to flying capacity is very high; but on the other hand a steamship is a mechanical success if its ratio of horse-power to tonnage is insignificant. A flying machine that would fly at a speed of 50 miles per hour with engines of 1,000 horse-power would not be upheld by its wings at all at a speed of less than
PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  



Top keywords:
machine
 

flying

 

travel

 
minute
 

capacity

 

pounds

 

engine

 

decrease

 
Professor
 
speeds

double

 

thrust

 

steamship

 

driven

 

increasing

 

Langley

 

attention

 

engines

 

economy

 
called

consumption
 

advantage

 
success
 

respects

 

increases

 

increase

 

simple

 
extremely
 
reached
 

steamboat


airship
 

mechanical

 

proportion

 

apparent

 

flight

 

tonnage

 

insignificant

 

upheld

 

disadvantage

 

conversely


balloon

 

boiler

 

actual

 
matter
 

require

 

required

 

horizontal

 

pressure

 

reduced

 

gliding