FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   >>  
l (fig. 152), and the resulting later stages were double-tailed (fig. 153). Figure 156 shows how the spindle-substance goes into the tail and gradually disappears as the tail lengthens. The centrosome is evidently applied to the nuclear membrane, as in _Stenopelmatus_, and the middle-piece is developed in connection with it, as in figures 156-157, 154-155, 158-160. The element _x_ of the spermatids gradually disappears (figs. 150, 159). An acrosome develops at the anterior end, the head condenses and lengthens, and we have the ripe spermatozoon (fig. 161). The tail is very long and is shown only in part. Of the forms studied, _Blattella_ alone has many degenerate spermatozoa. Some follicles have none, others a number varying perhaps from one-fourth to three-fourths of the whole number. No evidence of degeneracy was detected among the young spermatids up to the stage shown in figures 154-155, where a few like figure 162 were found. Most of the degenerate forms occur among the nearly ripe spermatozoa or in the sperm-ducts. Such are shown in figures 163 to 168. The chromatin is strangely broken up into irregular clumps, and probably no two of these degenerate sperm-heads can be found which are alike. The tails are always imperfect. The distribution and varying numbers of these degenerate spermatozoa make it impossible to interpret their condition as due to the absence of the accessory chromosome, as Miss Wallace does in the spider. The only probable explanation, it seems to me, is imperfect mitosis. Cases where more or less chromatin is left behind in the cytoplasm, especially in the first spermatocyte mitosis, are very common, and such cases as those shown in figures 149 and 150 are not rare. The giant cells, so far as I have been able to trace them, do not develop into spermatozoa. The most important points are: (1) The presence of the element _x_ in the spermatogonia, closely associated with the nucleolus. (2) The uneven number of chromatin elements in the metaphase of spermatogonial divisions. (3) The connection of the element _x_ with the spireme up to the stage where the spireme segments to form the bivalent chromosomes. (4) The varied character of the tetrads, showing the first spermatocyte division to be a reducing division in the sense that it separates whole chromosomes. (5) The fact that the element _x_ fails to divide in the first maturation division, does divide in the second, but can not be
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   >>  



Top keywords:
spermatozoa
 

degenerate

 

figures

 

element

 

number

 

division

 
chromatin
 
imperfect
 
mitosis
 

spermatocyte


divide

 

chromosomes

 

spireme

 
varying
 

connection

 

lengthens

 

disappears

 

gradually

 

spermatids

 

double


cytoplasm

 

tailed

 

common

 

chromosome

 
Wallace
 

accessory

 

absence

 

condition

 
Figure
 

spider


probable

 

explanation

 
tetrads
 

showing

 
resulting
 

reducing

 

character

 

varied

 
bivalent
 

maturation


separates
 
segments
 

presence

 

spermatogonia

 

closely

 

points

 
develop
 

important

 

nucleolus

 

divisions