FREE BOOKS

Author's List




PREV.   NEXT  
|<   184   185   186   187   188   189   190   191   192   193   194   195   196   >>  
----------------------------------------------- The request was sent by (Mr.) B.J. Mares on Sat Dec 9 19:10:27 PST 1995 The email address is: bjmares@teleport.com The number to be tested is: .86224012586805457155779028324939457856576474276829909451607121455730674059051645804203844143861813$ 451257229030330958513908111490904372705631904836799517334609935566864203581911199877725969528883243$ Another binary pattern. --------------------------------------------------------- The request was sent by Jon Borwein on Sun Nov 5 06:09:28 GMT 1995 The email address is: jborwein@cecm.sfu.ca The number to be tested is: .01118680003287710787004681 The number of correct digits in the number: 20 The test(s) to be performed on the number: algebraic -------------------------------------------------------- 1.456791031046907 The number of correct digits in the number: 16 The test(s) to be performed on the number: algebraic gamma_multiplicative gamma_additve zeta_multiplicative zeta_additive psi_digamma linear_dependence_salvage The hints given by the user: p(0)=1 q(0)=2 p(i+1)=sqrt(p(i)*q(i)) i = 0,1,2,.. q(i+1)=(p(i) + q(i))/2 i = 0,1,2,.. x = lim p(i) = lim q(i) i->+inf i->+inf -------------------------------------------------------- The request was sent by Olivier Gerard on Mon Jan 29 18:48:42 PST 1996 The email address is: quadrature@onco.techlink.fr The number to be tested is: 1.062550805496255938 This number arises in the study of generalized Zeta functions on non associative sets. -------------------------------------------------------- The request was sent by Michael Mossinghoff on Fri Feb 9 14:40:28 PST 1996 The email address is: mjm@math.appstate.edu The number to be tested is: 1.296210659593309 (see below for 2500 digits of it). As I mentioned in the original note, it would be interesting to see if this number satisfies a simple polynomial of degree > 34. The simplest polynomial I know of that it satisfies is x^38-x^36-x^34-x^29+x^28-x^24-x^14+x^10-x^9-x^4-x^2+1 I found this during a search for polynomials with height 1, degree 38, and Mahler measure < 1.3. I also have a second new Salem number that would be interesting to try. Thanks for running this! Best regards, Mike Mossinghoff mjm@math.appstate.edu 1.2962106595933092168517831791253754042307237363926176836463419715400357507663\ 555372700460810162259842255
PREV.   NEXT  
|<   184   185   186   187   188   189   190   191   192   193   194   195   196   >>  



Top keywords:

number

 

tested

 
address
 

request

 
digits
 

algebraic

 
multiplicative
 
appstate
 

interesting

 

satisfies


degree
 
polynomial
 

performed

 

Mossinghoff

 

correct

 
simplest
 

simple

 

mentioned

 
86224012586805457155779028324939457856576474276829909451607121455730674059051645804203844143861813
 

296210659593309


451257229030330958513908111490904372705631904836799517334609935566864203581911199877725969528883243

 

Another

 
bjmares
 

teleport

 

original

 

Thanks

 

running

 
2962106595933092168517831791253754042307237363926176836463419715400357507663
 
555372700460810162259842255
 

binary


search

 

polynomials

 

Mahler

 
measure
 
height
 

jborwein

 

Olivier

 
salvage
 

01118680003287710787004681

 

additve


456791031046907

 
additive
 

dependence

 
linear
 

digamma

 
Gerard
 

functions

 

generalized

 

associative

 

Borwein