FREE BOOKS

Author's List




PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   >>  
is known as the "Bessemer process" was invented. One great difficulty in the manufacture of steel was to leave just the right amount of carbon in the iron. Bessemer simply took it all out, and then put back exactly what was needed. Molten iron, tons and tons of it, is run into an immense pear-shaped vessel called a "converter." Fierce blasts of air are forced in from below. These unite with the carbon and destroy it. There is a roar, a clatter, and a clang. Terrible flames of glowing red shoot up. Suddenly they change from red to yellow, then to white; and this is the signal that the carbon has been burned out. The enormously heavy converter is so perfectly poised that a child can move it. The workmen now tilt it and drop in whatever carbon is needed. The molten steel is poured into square moulds, forming masses called "blooms," and is carried away. More iron is put into the converter, and the work begins again. The Bessemer process makes enormous masses of steel and makes it very cheaply; but it has one fault--it is too quick. The converter roars away for a few minutes, till the carbon and other impurities are burned out; and the men have no control over the operation. In what is called the "open-hearth" process, pig iron, scrap iron, and ore are melted together with whatever other substances may be needed to make the particular kind of steel desired. This process takes much longer than the Bessemer, but it can be controlled. Open-hearth steel is more homogeneous,--that is, more nearly alike all the way through,--and is better for some purposes, while for others the Bessemer is preferred. Steel is hard and strong, but it has two faults. A steel bar will stand a very heavy blow and not break, but if it is struck gently many thousand times, it sometimes crystallizes and may snap. A steel rail may carry a train for years and then may crystallize and break and cause a wreck. Inventors are at work discovering alloys to prevent this crystallization. The second fault of steel is that it rusts and loses its strength. That is why an iron bridge or fence must be kept painted to protect it from the moisture in the air. If all the iron that is in use should suddenly disappear, did you ever think what would happen? Houses, churches, skyscrapers, and bridges would fall to the ground. Railroad trains, automobiles, and carriages would become heaps of rubbish. Ships would fall apart and become only scattered planks floating on the
PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   >>  



Top keywords:

carbon

 

Bessemer

 

process

 

converter

 

needed

 

called

 
burned
 

hearth

 

masses

 
crystallizes

struck

 

gently

 

thousand

 

discovering

 
alloys
 

prevent

 
Inventors
 

crystallize

 

purposes

 

difficulty


homogeneous
 

preferred

 

crystallization

 

strong

 

faults

 
ground
 

Railroad

 

trains

 

bridges

 

skyscrapers


invented

 

happen

 

Houses

 

churches

 

automobiles

 
carriages
 

scattered

 
planks
 

floating

 

rubbish


bridge

 
strength
 

painted

 

suddenly

 

disappear

 

protect

 
moisture
 

longer

 
poised
 
perfectly