FREE BOOKS

Author's List




PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   >>  
the rest of the body, how is any variation possible? Different individuals of any species have slightly different congenital tendencies. Hence in the act of fertilization two germ-plasms of slightly different structure and tendency are mingled. The mingling of the two produces a germ-plasm and individual differing from both of the parents. Thus, according to Weismann's earlier view, the origin of variation was to be sought in sexual reproduction through the mingling of slightly different germ-plasms. But how did these two germ-plasms come to be different? How was the variation started? To explain this Weismann went back to the unicellular protozoa. These animals are undoubtedly influenced by environment and vary under its stimuli. Here the variations were stamped upon the germ-plasm, and the commingling of these variously stamped germ-plasms has resulted in all the variations of higher animals. Of late Weismann has modified and greatly improved this portion of his theory. He now accepts the view that external influences may act upon the germ-plasm not only in protozoa but also in all higher animals. Variation is thus due to the action or stimulus of external influences, supplemented by sexual reproduction. But the very constitution of the germ-plasm and its relation to the body absolutely forbids the transmission of acquired somatic characteristics and of the special effects of use and disuse. Muscular activity promotes general health, and might thus conduce to better-nourished germ-cells and to more vigorous and therefore athletic descendants. The exercise of the muscles might possibly cause such a condition of the blood that the portion of the germ-plasm representing the muscular system of the next generation might be especially nourished or stimulated. Thus an athletic parent might produce more athletic children. But let us imagine twin brothers of equal muscular development. One from childhood on exercises the lower half of his body; the other, the upper. Both take the same amount of exercise, and have perhaps equal muscular development, but located in different halves of the body. Now it is hard to conceive that it can make any difference in the nourishing or stimulating influence of the blood, whether the muscular activity resides in one half of the body or the other. The children might be exactly alike. One man drives the pen, a second plays the piano, and a third wields a light hammer. All three use
PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   >>  



Top keywords:

muscular

 
plasms
 

variation

 
animals
 

athletic

 

slightly

 

Weismann

 

external

 

protozoa

 

higher


influences

 

variations

 
portion
 

stamped

 

development

 

reproduction

 
children
 

mingling

 
exercise
 

sexual


nourished
 

activity

 

vigorous

 

conduce

 

parent

 

condition

 

generation

 

imagine

 

representing

 

system


stimulated

 

descendants

 

muscles

 
possibly
 
produce
 

amount

 

drives

 
resides
 

stimulating

 

influence


hammer

 

wields

 

nourishing

 

difference

 

exercises

 
brothers
 

childhood

 
health
 

conceive

 

located