FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   >>  
A reversal of Still River may be explained by glacial scouring which caused the northern end of the valley to become lower than the present divides at West Redding and Mill Plain. The evidence of such scour should be an overdeepened, U-shaped main valley and ungraded tributaries. The northern part of Still River valley has not the typical U form which results from glacial erosion. As contrasted with the U-shaped glacial valley and the V-shaped valley of normal stream erosion, it might be called rectangular so sharply does the flat valley floor terminate against the steep hillsides. The floor is too smooth and flat and the tributary valleys too closely adjusted to the variant hardness of the rocks to be the work of such a rough instrument as the glacier. A level so nearly perfect as that of the flood plain is the natural result of erosion of soft rock down to a baselevel, whereas glacial scouring tends to produce a surface with low rounded hills and hollows. Overdeepening would be expected, because glaciers erode without reference to existing baselevels. That a river valley should be cut out by ice just enough to leave it graded with respect to the main valley would be an unusual coincidence. This is what is found where the Still River valley joins the Housatonic, and it indicates normal stream erosion. Also, if the limestone of the northern Still River valley were gouged out by the glacier, the action would in all probability have been continuous in the limestone belt to the north of the Housatonic, and where the belt of soft rock crosses the Housatonic the river bed would be overdeepened. Although the valley of the Housatonic near New Milford is very flat, as is natural where a river crosses a belt of weak rock, the outcrops are sufficiently numerous to show that it has not been overdeepened. The limestone area along the East Aspetuck is largely overlain by till, but here again the presence of rock in place shows that the valley has not been overdeepened. Moreover, limestone boulders in the southern part of Still River valley are not as abundant as they should be under the hypothesis that the northern part had been gouged out extensively. That the northern part of the Still River valley was not deeply carved by ice is shown also by the character of the tributary streams. The three small brooks on the west side of the valley, near Beaver Brook Mountain, were examined to see if their grades indicated an over-deep
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   >>  



Top keywords:

valley

 

northern

 
overdeepened
 

limestone

 

erosion

 

Housatonic

 

glacial

 
shaped
 

stream

 

natural


crosses

 

normal

 

tributary

 
gouged
 
glacier
 

scouring

 

sufficiently

 
numerous
 

outcrops

 

action


probability
 

Milford

 
Although
 

continuous

 

boulders

 

brooks

 

streams

 

carved

 

character

 
Beaver

grades

 

Mountain

 

examined

 
deeply
 

presence

 
overlain
 
Aspetuck
 

largely

 

hypothesis

 
extensively

abundant

 
Moreover
 
southern
 

rounded

 

called

 

contrasted

 

results

 
rectangular
 
sharply
 

smooth