FREE BOOKS

Author's List




PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  
ing operation will put things right. Remove the bearing on the pulley side, and enlarge the hole slightly. Then bore a hole in the centre of a metal disc, 1 inch in diameter, to fit the bearing; and drill three holes for screws to hold the disc against the case. Rub disc and bearing bright all over. Replace the bearing in its hole, slip the disc over it, and push the shaft through both bearings. Move the disc about until the shaft turns easily, mark the screw holes, and insert the screws. Finally, solder the bearing to the disc while the shaft is still in place. The wheel is a flat brass disc 4 inches in diameter. Polish this, and scratch on one side twelve equally spaced radii. At the end of each radius a small cup, made by bending a piece of strip brass 1/4 inch wide and 1/2 inch long into an arc of a circle, is soldered with its extremities on the scratch. A little "Tinol" soldering lamp (price 1s. 6d.) comes in very handy here. To fix the wheel of the shaft requires the use of a third small piece of tubing, which should be turned off quite square at both ends. Slip this and the wheel on the shaft, and make a good, firm, soldered joint. Note.-- Consult Fig. 107 for a general idea of the position of the wheel, which must be kept just clear of the case by the near bearing. [Illustration: FIG. 107.--Plan of water turbine, showing arrangement of nozzle.] The nozzle should be a straight, tapered tube of some kind--the nose of a large oil can will serve the purpose. The exit must be small enough to allow the water to leave it at high velocity; if too large, the efficiency of the wheel will be diminished. To the rear end of the nozzle should be soldered a piece of brass tubing, which will make a tight fit with the hose pipe leading from the water supply. A few small brass rings soldered round this piece will prevent the hose blowing off if well wired on the outside. Now comes the boring of the hole for the nozzle. Fig. 106 shows the line it should take horizontally, so that the water shall strike the uppermost bucket just below the centre; while Fig. 107 indicates the obliquity needed to make the stream miss the intervening bucket. A tapered broach should be used to enlarge the hole gradually till the nozzle projects sufficiently. If the line is not quite correct, the tip should be bent carefully in the direction required. One must avoid distorting the orifice, which should be perfectly circular; clean it out wit
PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  



Top keywords:

bearing

 

nozzle

 
soldered
 

tubing

 

scratch

 

enlarge

 

centre

 

bucket

 

screws

 
tapered

diameter

 
velocity
 
leading
 
diminished
 
efficiency
 

purpose

 

arrangement

 

straight

 

showing

 

turbine


horizontally

 

sufficiently

 

correct

 

projects

 

intervening

 

broach

 

gradually

 

carefully

 
circular
 

perfectly


orifice

 

distorting

 

direction

 

required

 
stream
 
boring
 

blowing

 
prevent
 
obliquity
 

needed


uppermost
 
strike
 

Illustration

 

supply

 

requires

 

easily

 

insert

 

bearings

 

Finally

 

solder