FREE BOOKS

Author's List




PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  
d and the air. If we place a wet cloth on the head, and hasten the evaporation of the water by fanning, we cool the head; if we wrap a wet napkin around a pitcher of water, and place it in a current of air, the water in the pitcher is made cooler, by giving up its heat to the evaporating water of the napkin; when we sprinkle water on the floor of a room, its evaporation cools the air of the room. So great is the effect of evaporation, on the temperature of the soil, that Dr. Madden found that the soil of a drained field, in which most of the water was removed from below, was 6-1/2 deg. Far. warmer than a similar soil undrained, from which the water had to be removed by evaporation. This difference of 6-1/2 deg. is equal to a difference of elevation of 1,950 feet. It has been found, by experiments made in England, that the average evaporation of water from wet soils is equal to a depth of _two inches per month_, from May to August, inclusive; in America it must be very much greater than this in the summer months, but this is surely enough for the purposes of illustration, as two inches of water, over an acre of land, would weigh about _two hundred tons_. The amount of heat required to evaporate this is immense, and a very large part of it is taken from the soil, which, thereby, becomes cooler, and less favorable for a rapid growth. It is usual to speak of heavy, wet lands as being "cold," and it is now seen why they are so. If none of the water which falls on a field is removed by drainage, (natural or artificial,) and if none runs off from the surface, the whole rain-fall of a year must be removed by evaporation, and the cooling of the soil will be proportionately great. The more completely we withdraw this water from the surface, and carry it off in underground drains, the more do we reduce the amount to be removed by evaporation. In land which is well drained, the amount evaporated, even in summer, will not be sufficient to so lower the temperature of the soil as to retard the growth of plants; the small amount dried out of the particles of the soil, (water of absorption,) will only keep it from being raised to too great a heat by the mid-summer sun. An idea of the amount of heat lost to the soil, in the evaporation of water, may be formed from the fact that to evaporate, by artificial heat, the amount of water contained in a rain-fall of two inches on an acre, (200 tons,) would require over 20 tons of coal. Of
PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  



Top keywords:
evaporation
 

amount

 

removed

 

inches

 
summer
 
artificial
 

difference

 
surface
 

temperature

 

pitcher


cooler

 

growth

 
evaporate
 

drained

 
napkin
 
cooling
 

proportionately

 

natural

 
drainage
 

evaporated


raised

 

require

 

formed

 
contained
 

absorption

 
particles
 

reduce

 

drains

 

withdraw

 

underground


plants

 

retard

 
sufficient
 

completely

 

hundred

 

fanning

 
undrained
 
similar
 

warmer

 

elevation


England

 

average

 

experiments

 

sprinkle

 
evaporating
 

current

 
Madden
 

effect

 
required
 

immense