FREE BOOKS

Author's List




PREV.   NEXT  
|<   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196  
197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   >>   >|  
rom a few very simple instincts. I was led to investigate this subject by Mr. Waterhouse, who has shown that the form of the cell stands in close relation to the presence of adjoining cells; and the following view may, perhaps, be considered only as a modification of his theory. Let us look to the great principle of gradation, and see whether Nature does not reveal to us her method of work. At one end of a short series we have humble-bees, which use their old cocoons to hold honey, sometimes adding to them short tubes of wax, and likewise making separate and very irregular rounded cells of wax. At the other end of the series we have the cells of the hive-bee, placed in a double layer: each cell, as is well known, is an hexagonal prism, with the basal edges of its six sides bevelled so as to join on to a pyramid, formed of three rhombs. These rhombs have certain angles, and the three which form the pyramidal base of a single cell on one side of the comb, enter into the composition of the bases of three adjoining cells on the opposite side. In the series between the extreme perfection of the cells of the hive-bee and the simplicity of those of the humble-bee, we have the cells of the Mexican Melipona domestica, carefully described and figured by Pierre Huber. The Melipona itself is intermediate in structure between the hive and humble bee, but more nearly related to the latter: it forms a nearly regular waxen comb of cylindrical cells, in which the young are hatched, and, in addition, some large cells of wax for holding honey. These latter cells are nearly spherical and of nearly equal sizes, and are aggregated into an irregular mass. But the important point to notice, is that these cells are always made at that degree of nearness to each other, that they would have intersected or broken into each other, if the spheres had been completed; but this is never permitted, the bees building perfectly flat walls of wax between the spheres which thus tend to intersect. Hence each cell consists of an outer spherical portion and of two, three, or more perfectly flat surfaces, according as the cell adjoins two, three or more other cells. When one cell comes into contact with three other cells, which, from the spheres being nearly of the same size, is very frequently and necessarily the case, the three flat surfaces are united into a pyramid; and this pyramid, as Huber has remarked, is manifestly a gross imitation of the three-sided
PREV.   NEXT  
|<   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196  
197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   >>   >|  



Top keywords:

series

 

spheres

 

humble

 

pyramid

 

rhombs

 

adjoining

 

perfectly

 

irregular

 

spherical

 

surfaces


Melipona

 

aggregated

 

notice

 
important
 

Pierre

 

holding

 
intermediate
 
hatched
 

related

 

cylindrical


regular

 

addition

 
instincts
 

structure

 

simple

 

intersected

 

contact

 

adjoins

 

portion

 

manifestly


imitation

 

remarked

 

united

 

frequently

 

necessarily

 

consists

 

figured

 

broken

 

degree

 

nearness


intersect

 

building

 

completed

 
permitted
 

stands

 

relation

 

method

 

presence

 
cocoons
 
likewise