FREE BOOKS

Author's List




PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  
sion of any one of which would probably have resulted eventually in failure. [Footnote 8: As a practical illustration of these facts it was calculated by Professor Barker, of the University of Pennsylvania (after Edison had invented the incandescent lamp), that if it should cost $100,000 for copper conductors to supply current to Edison lamps in a given area, it would cost about $200,000,000 for copper conductors for lighting the same area by lamps of the earlier experimenters--such, for instance, as the lamp invented by Konn in 1875. This enormous difference would be accounted for by the fact that Edison's lamp was one having a high resistance and relatively small radiating surface, while Konn's lamp was one having a very low resistance and large radiating surface.] Continuing the digression one step farther in order to explain the term "multiple arc," it may be stated that there are two principal systems of distributing electric current, one termed "series," and the other "multiple arc." The two are illustrated, diagrammatically, side by side, the arrows indicating flow of current. The series system, it will be seen, presents one continuous path for the current. The current for the last lamp must pass through the first and all the intermediate lamps. Hence, if any one light goes out, the continuity of the path is broken, current cannot flow, and all the lamps are extinguished unless a loop or by-path is provided. It is quite obvious that such a system would be commercially impracticable where small units, similar to gas jets, were employed. On the other hand, in the multiple-arc system, current may be considered as flowing in two parallel conductors like the vertical sides of a ladder, the ends of which never come together. Each lamp is placed in a separate circuit across these two conductors, like a rung in the ladder, thus making a separate and independent path for the current in each case. Hence, if a lamp goes out, only that individual subdivision, or ladder step, is affected; just that one particular path for the current is interrupted, but none of the other lamps is interfered with. They remain lighted, each one independent of the other. The reader will quite readily understand, therefore, that a multiple-arc system is the only one practically commercial where electric light is to be used in small units like those of gas or oil. Such was t
PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  



Top keywords:

current

 

conductors

 
system
 

multiple

 

ladder

 
Edison
 

resistance

 

separate

 

radiating

 

surface


series

 

electric

 
copper
 

independent

 
invented
 
impracticable
 
employed
 

commercially

 

broken

 

extinguished


similar

 

obvious

 
provided
 

circuit

 

remain

 

lighted

 
reader
 

interfered

 

interrupted

 

readily


understand

 

practically

 

commercial

 

flowing

 

parallel

 

vertical

 

individual

 
subdivision
 

affected

 

making


considered

 

distributing

 
supply
 
incandescent
 

instance

 

experimenters

 

earlier

 
lighting
 

Pennsylvania

 

University