FREE BOOKS

Author's List




PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  
may either happen or fail, that fraction will be a proper designation of the probability of happening. Thus, if an event has 3 chances to happen, and 2 to fail, then the fraction 3/5 will fairly represent the probability of its happening, and may be taken to be the measure of it. The same may be said of the probability of failing, which will likewise be measured by a fraction whose numerator is the number of chances whereby it may fail, and the denominator the whole number of chances both for its happening and failing; thus the probability of the failing of that event which has 2 chances to fail and 3 to happen will be measured by the fraction 2/5. The fractions which represent the probabilities of happening and failing, being added together, their sum will always be equal to unity, since the sum of their numerators will be equal to their common denominator. Now, it being a certainty that an event will either happen or fail, it follows that certainty, which may be conceived under the notion of an infinitely great degree of probability, is fitly represented by unity. These things will be easily apprehended if it be considered that the word probability includes a double idea; first, of the number of chances whereby an event may happen; secondly, of the number of chances whereby it may either happen or fail. If I say that I have three chances to win any sum of money, it is impossible from the bare assertion to judge whether I am likely to obtain it; but if I add that the number of chances either to obtain it or miss it, is five in all, from this will ensue a comparison between the chances that are for and against me, whereby a true judgment will be formed of my probability of success; whence it necessarily follows that it is the comparative magnitude of the number of chances to happen, in respect of the whole number of chances either to happen or to fail, which is the true measure of probability. To find the probability of throwing an ace in two throws with a single die. The probability of throwing an ace the first time is 1/6; whereof 1/ is the first part of the probability required. If the ace be missed the first time, still it may be thrown on the second; but the probability of missing it the first time is 5/6, and the probability of throwing it the second time is 1/6; therefore the probability of missing it the first time and throwing it the second, is 5/6 X 1/6 = 5/36 and this is the second part of the proba
PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  



Top keywords:

probability

 

chances

 

happen

 

number

 
failing
 
fraction
 

happening

 

throwing

 

obtain

 

certainty


missing

 

represent

 

measure

 

measured

 

denominator

 

comparison

 

judgment

 
success
 

throws

 

missed


required
 
single
 

thrown

 

necessarily

 

whereof

 

comparative

 

magnitude

 
respect
 

formed

 

probabilities


fractions

 
numerators
 

conceived

 
common
 

fairly

 

designation

 
proper
 
numerator
 

likewise

 

notion


infinitely

 

assertion

 

impossible

 

double

 

represented

 

degree

 
things
 

easily

 
includes
 

considered