FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
split the way of the grain (on the lines of cleavage), but is much more difficult and requires greater force to break across the grain. Rocks also show distinct lines of cleavage, and are more readily split one way than another, the line of cleavage or stratum of break being at any angle and not necessarily parallel to its bed. A striking example of this is seen in slate, which may be split in plates, or laminae, with great facility, though this property is the result of the pressure to which the rock has been for ages subjected, which has caused a change in the molecules, rather than by "cleavage" as the term is strictly understood, and as existing in minerals. Mica is also another example of laminated cleavage, for given care, and a thin, fine knife to divide the plates, this mineral may be "cleaved" to such remarkably thin sheets as to be unable to sustain the most delicate touch without shattering. These are well-known examples of simple cleavage, in one definite direction, though in many instances there are several forms and directions of cleavage, but even in these there is generally one part or line in and on which cleavage will take place much more readily than on the others, these planes or lines also showing different properties and angular characters, which, no matter how much fractured, always remain the same. It is this "cleavage" which causes a crystal to reproduce itself exactly, as explained in the last chapter, showing its parent form, shape and characteristics with microscopic perfection, but more and more in miniature as its size is reduced. This may clearly be seen by taking a very small quantity of such a substance as chlorate of potash. If a crystal of this is examined under a magnifying glass till its crystalline form and structure are familiar, and it is then placed in a test-tube and gently heated, cleavage will at once be evident. With a little crackling, the chlorate splits itself into many crystals along its chief lines of cleavage (called the cleavage planes), every one of which crystals showing under the microscope the identical form and characteristics of the larger crystal from which it came. The cleavage of minerals must, therefore, be considered as a part of their crystalline structure, since this is caused by cleavage, so that both cleavage and crystalline structure should be considered together. Thus we see that given an unchangeable crystal with cleavage planes evident, it is p
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

cleavage

 
crystal
 
structure
 

crystalline

 
showing
 
planes
 
crystals
 

caused

 

characteristics

 

chlorate


evident
 

minerals

 

readily

 

considered

 
plates
 
reduced
 

substance

 

quantity

 

taking

 
perfection

chapter
 

parent

 

unchangeable

 

explained

 
reproduce
 

microscopic

 

potash

 
miniature
 

splits

 
crackling

remain
 

microscope

 

identical

 

called

 

familiar

 
larger
 

examined

 

magnifying

 

gently

 
heated

definite

 

pressure

 

result

 

facility

 
property
 

subjected

 

change

 
existing
 

laminated

 

understood