FREE BOOKS

Author's List




PREV.   NEXT  
|<   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332  
333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   >>   >|  
eighed against the advantages of high capacity developed from small heating surfaces. Briefly stated, these factors are as follows: 1st. Efficiency. As the capacity increases, there will in general be a decrease in efficiency, this loss above a certain point making it inadvisable to try to secure more than a definite horse power from a given boiler. This loss of efficiency with increased capacity is treated below in detail, in considering the relation of efficiency to capacity. 2nd. Grate Ratio Possible or Practicable. All fuels have a maximum rate of combustion, beyond which satisfactory results cannot be obtained, regardless of draft available or which may be secured by mechanical means. Such being the case, it is evident that with this maximum combustion rate secured, the only method of obtaining added capacity will be through the addition of grate surface. There is obviously a point beyond which the grate surface for a given boiler cannot be increased. This is due to the impracticability of handling grates above a certain maximum size, to the enormous loss in draft pressure through a boiler resulting from an attempt to force an abnormal quantity of gas through the heating surface and to innumerable details of design and maintenance that would make such an arrangement wholly unfeasible. 3rd. Feed Water. The difficulties that may arise through the use of poor feed water or that are liable to happen through the use of practically any feed water have already been pointed out. This question of feed is frequently the limiting factor in the capacity obtainable, for with an increase in such capacity comes an added concentration of such ingredients in the feed water as will cause priming, foaming or rapid scale formation. Certain waters which will give no trouble that cannot be readily overcome with the boiler run at ordinary ratings will cause difficulties at higher ratings entirely out of proportion to any advantage secured by an increase in the power that a definite amount of heating surface may be made to produce. Where capacity in the sense of overload is desired, the type of boiler selected will play a large part in the successful operation through such periods. A boiler must be selected with which there is possible a furnace arrangement that will give flexibility without undue loss in efficiency over the range of capacity desired. The heating surface must be so arranged that it will be possible to install in a
PREV.   NEXT  
|<   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332  
333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   >>   >|  



Top keywords:

capacity

 

boiler

 

surface

 

efficiency

 
heating
 
maximum
 

secured

 

increase

 

definite

 

ratings


increased

 

arrangement

 

difficulties

 

desired

 

selected

 

combustion

 

priming

 
concentration
 

ingredients

 

liable


happen
 
practically
 

foaming

 

limiting

 

factor

 

frequently

 

question

 
pointed
 

obtainable

 

ordinary


successful

 
operation
 

periods

 
overload
 

furnace

 

arranged

 
install
 
flexibility
 

trouble

 

readily


overcome

 

waters

 

formation

 

Certain

 

amount

 

produce

 
advantage
 

proportion

 
higher
 

treated