FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  
ge quantities of roburite itself abroad, the Company also export to the various colonies the two components, as manufactured in the chemical works, and which separately are quite non-explosive, and which, having arrived at their destination, can be easily mixed in the proper proportions. Among the special advantages claimed for roburite are:--First, that it is impossible to explode a cartridge by percussion, fire, or electric sparks. If a cartridge or layer be struck with a heavy hammer, the portion struck is decomposed, owing to the large amount of heat developed by the blow. The remaining explosive is not in the least affected, and no detonation whatever takes place. If roburite be mixed with gunpowder, and the gunpowder fired, the explosion simply scatters the roburite without affecting it in the least. In fact, the only way to explode roburite is to detonate it by means of a cap of fulminate, containing at least 1 gramme of fulminate of mercury. Secondly, its great safety for use in coal mines. Roburite has the great advantage of exploding by detonation at a very low temperature, indeed so low that a very slight amount of tamping is required when fired in the most explosive mixture of air and coal gas possible, and not at all in a mixture of air and coal dust--a condition in which the use of gunpowder is highly dangerous. Mr W.J. Orsman, F.I.C., in a paper read at the University College, Nottingham, in 1893, gives the temperature of detonation of roburite as below 2,100 deg. C., and of ammonium nitrate as 1,130 deg. C., whereas that of blasting gelatine is as much as 3,220 deg. C. With regard to the composition of the fumes formed by the explosion of roburite, Mr Orsman says: "With certain safety explosives--roburite, for instance--an excess of the oxidising material is added, namely, nitrate of ammonia; but in this case the excess of oxygen here causes a diminution of temperature, as the nitrate of ammonia on being decomposed absorbs heat. This excess of oxygen effectually prevents the formation of carbon monoxide (CO) and the oxides of nitrogen." The following table (A), also from Mr Orsman's paper, gives the composition of five prominent explosives, and shows the composition of the gases formed on explosion. The gases were collected after detonating 10 grms. of each in a closed strong steel cylinder, having an internal diameter of 5 inches. With respect to the influence of ammonium nitrate in lowering the
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  



Top keywords:

roburite

 

nitrate

 
temperature
 

composition

 

gunpowder

 
explosion
 

excess

 

detonation

 

Orsman

 

explosive


decomposed

 

safety

 
amount
 

struck

 
formed
 
explosives
 
ammonia
 

oxygen

 

fulminate

 

explode


cartridge

 

ammonium

 
mixture
 

instance

 

blasting

 

College

 
regard
 

University

 

Nottingham

 

gelatine


oxidising

 

detonating

 

collected

 

prominent

 

closed

 

inches

 

respect

 
influence
 

lowering

 

diameter


strong

 

cylinder

 
internal
 
diminution
 

absorbs

 

effectually

 

oxides

 
nitrogen
 

monoxide

 

prevents