FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
The explosive bodies formed by the nitration of jute have been studied by Messrs Cross and Bevan. and also by Muehlhaeuer. The former chemists give jute the formula C_{12}H_{18}O_{9}, and believe that its conversion into a nitro-compound takes place according to the equation-- C_{12}H_{18}O_{9} + 3HNO_{3} = 3H_{2}O + C_{12}H_{15}O_(6}(NO_{3})_{3}. This is equivalent to a gain in weight of 44 per cent. for the tri- nitrate, and 58 per cent. for the tetra-nitrate. The formation of the tetra-nitrate appears to be the limit of nitration of jute fibre. Messrs Cross and Bevan say, "In other words, if we represent the ligno-cellulose molecule by a C_{12} formula, it will contain four hydroxyl (OH) groups, or two less than cellulose similarly represented." It contains 11.5 per cent. of nitrogen. The jute nitrates resemble those of cellulose, and are in all essential points nitrates of ligno-cellulose. Nitro-jute is used in the composition of the well-known Cooppal Smokeless Powders. Cross and Bevan are of opinion that there is no very obvious advantage in the use of lignified textile fibres as raw materials for explosive nitrates, seeing that a number of raw materials containing cellulose (chiefly as cotton) can be obtained at from L10 to L25 a ton, and yield also 150 to 170 per cent. of explosive material when nitrated (whereas jute only gives 154.4 per cent.), and are in many ways superior to the products obtained from jute. Nitro-lignin, or nitrated wood, is, however, largely used in the composition of a good many of the smokeless powders, such as Schultze's, the Smokeless Powder Co.'s products, and others. ~The Danger Area.~--That portion of the works that is devoted to the actual manufacture or mixing of explosive material is generally designated by the term "danger area," and the buildings erected upon it are spoken of as "danger buildings." The best material of which to construct these buildings is of wood, as in the event of an explosion they will offer less resistance, and will cause much less danger than brick or stone buildings. When an explosion of nitro-glycerine or dynamite occurs in one of these buildings, the sides are generally blown out, and the roof is raised some considerable height, and finally descends upon the blown-out sides. If, on the other hand, the same explosion had occurred in a strong brick or stone building, the walls of which would offer a much larger resistance, large pieces of brickwor
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:

cellulose

 

buildings

 

explosive

 

nitrate

 

explosion

 

danger

 

nitrates

 

material

 

generally

 
Smokeless

composition
 

resistance

 

products

 
materials
 

formula

 

obtained

 
nitrated
 

nitration

 
Messrs
 

smokeless


powders
 

portion

 

Schultze

 

superior

 

lignin

 

Powder

 

Danger

 

largely

 

descends

 

finally


considerable

 

height

 

occurred

 
pieces
 

brickwor

 

larger

 

strong

 
building
 

raised

 
erected

spoken
 
designated
 

actual

 

manufacture

 

mixing

 

construct

 

dynamite

 

occurs

 
glycerine
 

devoted