FREE BOOKS

Author's List




PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   >>   >|  
k, which separate from one another and condense so as to produce chromosomes for a new division, correspond to the segments produced from the chromosomes of the preceding division. The behaviour of such nuclei as possess chromosomes of unequal size affords confirmatory evidence of the permanence of individual chromosomes in corresponding sections of an apparently uniform nuclear network. Moreover at each stage in division chromosomes with the same differences in size reappear. Other cases are known in which thicker portions occur in the substance of the resting nucleus, and these agree in number with the chromosomes. In this network, therefore, the individual chromosomes must have retained their original position. But the chromosomes cannot be regarded as the ultimate hereditary units in the nuclei, as their number is too small. Moreover, related species not infrequently show a difference in the number of their chromosomes, whereas the number of hereditary units must approximately agree. We thus picture to ourselves the carriers of hereditary characters as enclosed in the chromosomes; the transmitted fixed number of chromosomes is for us only the visible expression of the conception that the number of hereditary units which the chromosomes carry must be also constant. The ultimate hereditary units may, like the chromosomes themselves, retain a definite position in the resting nucleus. Further, it may be assumed that during the separation of the chromosomes from one another and during their assumption of the rod-like form, the hereditary units become aggregated in the chromomeres and that these are characterised by a constant order of succession. The hereditary units then grow, divide into two and are uniformly distributed by the fission of the chromosomes between their longitudinal halves. As the contraction and rod-like separation of the chromosomes serve to isnure the transmission of all hereditary units in the products of division of a nucleus, so, on the other hand, the reticular distension of each chromosome in the so-called resting nucleus may effect a separation of the carriers of hereditary units from each other and facilitate the specific activity of each of them. In the stages preliminary to their division, the chromosomes become denser and take up a substance which increases their staining capacity; this is called chromatin. This substance collects in the chromomeres and may form the nutritive material for
PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   >>   >|  



Top keywords:

chromosomes

 

hereditary

 

number

 

division

 

nucleus

 

separation

 

substance

 

resting

 
Moreover
 

network


position
 

ultimate

 

nuclei

 
carriers
 

called

 
chromomeres
 
constant
 

individual

 

definite

 

Further


uniformly

 

retain

 
divide
 

succession

 
aggregated
 

characterised

 

assumption

 

assumed

 
isnure
 

preliminary


denser

 

stages

 

specific

 

activity

 

increases

 

collects

 

nutritive

 

material

 
chromatin
 
staining

capacity

 

facilitate

 

effect

 

contraction

 

halves

 

longitudinal

 

fission

 

transmission

 

reticular

 

distension