age pamphlet describing his results. This, he
forwarded simultaneously to the learned societies and outstanding
scientists all over Europe. Written in Latin, the paper was published in
various journals in English, French, German, Italian and Danish during
the next few weeks.[10]
In summary, he reported that a compass needle experienced deviations
when placed near a wire connecting the terminals of a voltaic battery.
He described fully how the direction and magnitude of the needle
deflections varied with the relative position of the wire, and the
polarity of the battery, and stated "From the preceding facts, we may
likewise collect that this conflict performs circles...." Oersted's
comment that the voltaic apparatus used should "be strong enough to heat
a metallic wire red hot" does not excuse the 20-year delay of the
discovery.
Beginnings of Electromagnetic Instrumentation
The mere locating of a compass needle above or below a suitably oriented
portion of a voltaic circuit created an electrical instrument, the
moment Oersted's "effect" became known, and it was to this basic
juxtaposition that Ampere quickly gave the name of galvanometer.[11] It
cannot be said that the scientists of the day agreed that this
instrument detected or measured "electric current," however. Volta
himself had referred to the "current" in his original circuits, and
Ampere used the word freely and confidently in his electrodynamic
researches of 1820-1822, but Oersted did not use it first and many of
the German physicists who followed up his work avoided it for several
years. As late as 1832, Faraday could make only the rather noncommittal
statement: "By current I mean anything progressive, whether it be a
fluid of electricity or vibrations or generally progressive forces."[12]
Nevertheless, whatever the words or concepts they used, experimenters
agreed that Oersted's apparatus provided a method of monitoring the
"strength" of a voltaic circuit and a means of comparing, for example,
one voltaic battery or circuit with another.
It was perfectly clear, from Oersted's pamphlet, that if a compass
needle was deflected clockwise when the wire of a particular voltaic
circuit lay above it in the magnetic meridian, the same needle would
_also_ be deflected clockwise if the wire was turned end-for-end and
placed _below_ the compass needle, without changing the rest of the
circuit. Anyone perceiving this fact might deduce, as a matter of log
|