FREE BOOKS

Author's List




PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  
gases was not understood. But he had followed the physical investigations of the seventeenth century, and was well acquainted with Torricelli's demonstration of the weight of the atmosphere. The only practical way for him to make a vessel lighter than air was to empty it of the air within it, and Torricelli's invention of the barometer seemed to bring such a device within reach. The common pump begat the barometer; the barometer begat the balloon. But the enormous pressure of the atmosphere on a vessel encasing a vacuum, though Lana had triumphed over it in argument, could not be so easily dealt with in practice. The success of the balloon was delayed until, by the discovery and production of a gas lighter than air, a frail and thin envelope could be supported against the pressure from without by an equal pressure from within. For ballooning what was chiefly necessary was a thorough knowledge of gases and of the means of producing them. The older chemistry, or alchemy, devoted all its attention, for centuries, to the precious metals, and knew nothing of gas. Medical chemistry, which succeeded it, was concerned chiefly with the curative properties of various chemical preparations. When Robert Boyle, and the investigators who came after him, put aside this age-long preoccupation with wealth and healing, and set themselves to determine, by observation and experiment, the nature of common substances, and the possibility of resolving them into simpler elements, modern chemistry began. Four states of matter, namely, earth, air, fire, and water, were recognized by the older chemists, and were by them called elements; it was the work of the eighteenth century to investigate these, and especially to separate the constituents of air and of water. In 1774 Joseph Priestley discovered oxygen. In 1782 Henry Cavendish showed that hydrogen, when burnt, produces water. At a much earlier date hydrogen had been produced by the action of acid on metals, and had been found to be many times lighter than air. Dr. Joseph Black, professor of chemistry in the University of Edinburgh, was the first to suggest, in 1767, that a balloon inflated with hydrogen would rise in the air; and the experiment was successfully tried with soap-bubbles by Tiberius Cavallo, in the year 1782. Nevertheless, the famous first balloon, which ascended in 1783, was not filled with hydrogen, and was invented by what may be called a happy accident. The brothers Josep
PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  



Top keywords:

balloon

 

chemistry

 

hydrogen

 

lighter

 

pressure

 

barometer

 
Joseph
 

metals

 
common
 
experiment

called

 
elements
 
chiefly
 

vessel

 
century
 

atmosphere

 
Torricelli
 

constituents

 
separate
 

investigations


physical

 
Cavendish
 

showed

 

Priestley

 

discovered

 

oxygen

 

simpler

 

acquainted

 

modern

 

resolving


nature

 

substances

 

possibility

 
states
 
recognized
 

chemists

 

seventeenth

 

eighteenth

 

matter

 

investigate


Tiberius

 

Cavallo

 
Nevertheless
 

bubbles

 
successfully
 
famous
 

ascended

 
accident
 
brothers
 

filled