FREE BOOKS

Author's List




PREV.   NEXT  
|<   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206  
207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   >>   >|  
at Edinburgh in 1893. During the same year Nikola Tesla published his researches on high frequency currents; on these much of the later work on wireless telegraphy was based. In 1895-6 William Rutherford set up at the Cavendish Laboratory apparatus by which he received signals in distant parts of Cambridge up to a distance of half a mile from the oscillator. Many other men of science, among whom was Captain H. B. Jackson, of the Royal Navy, were at work on the problem, when in 1896 Signor Guglielmo Marconi arrived in England with an apparatus of his own construction which ultimately brought wireless telegraphy to the stage of practical and commercial utility. By 1899 signals had been transmitted across the English Channel. Man has no sense organs which record the impact of electrical waves, but he has succeeded in devising instruments which register that impact, and which make it perceptible to the organs of sight or of hearing. The operation of the electrical waves may be best explained, perhaps, by the analogy of sound. When the string of a piano is struck by its hammer it vibrates, and communicates its vibrations to the surrounding air; these vibrations, travelling outwards in waves, produce corresponding vibrations in the ear-drum of a listener. The string is tuned, by its tension and its weight, to a single note; the ear can adapt itself to receive and transmit to the brain only a limited range of notes. There are many vibrations in the air which are too rapid or too slow for reception by the human ear. The sound-waves of the piano-string produce their effect on any neighbouring body which is capable of vibrating at the same rate as the incoming waves, as, for instance, another string tuned to the same note, or a volume of air enclosed in a vessel which vibrates in correspondence. These are in 'resonance' with the vibrating string; they repeat the original disturbance and reinforce its effect. So it is with electricity. If the electricity with which any conducting body is charged be suddenly disturbed, electrical waves are generated which travel outwards in all directions with the velocity of light. The problem of wireless telegraphy is the problem of producing these waves by means of an instrument called a transmitter, and of recording their impact at a distance by means of an instrument called a receiver. In its simplest form the transmitting instrument consists of two conducting bodies, or plates, charged th
PREV.   NEXT  
|<   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206  
207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   >>   >|  



Top keywords:

string

 

vibrations

 

impact

 

electrical

 

problem

 

instrument

 

wireless

 

telegraphy

 

electricity

 
vibrating

distance

 
effect
 
organs
 

signals

 
outwards
 

called

 

produce

 

conducting

 
vibrates
 

charged


apparatus

 

surrounding

 

limited

 
communicates
 
travelling
 

transmit

 

tension

 

weight

 

listener

 

single


receive

 
instance
 

directions

 

velocity

 

producing

 

travel

 

suddenly

 

disturbed

 
generated
 

transmitter


recording
 
bodies
 

plates

 

consists

 

transmitting

 

receiver

 

simplest

 
incoming
 

hammer

 
capable