FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  
a square that shall contain exactly the same area, you are confronted with the problem of squaring the circle. Well, it cannot be done with exactitude (though we can get an answer near enough for all practical purposes), because it is not possible to say in exact numbers what is the ratio of the diameter to the circumference. But it is only in recent times that it has been proved to be impossible, for it is one thing not to be able to perform a certain feat, but quite another to prove that it cannot be done. Only uninstructed cranks now waste their time in trying to square the circle. Again, we can never measure exactly in numbers the diagonal of a square. If you have a window pane exactly a foot on every side, there is the distance from corner to corner staring you in the face, yet you can never say in exact numbers what is the length of that diagonal. The simple person will at once suggest that we might take our diagonal first, say an exact foot, and then construct our square. Yes, you can do this, but then you can never say exactly what is the length of the side. You can have it which way you like, but you cannot have it both ways. All my readers know what a magic square is. The numbers 1 to 9 can be arranged in a square of nine cells, so that all the columns and rows and each of the diagonals will add up 15. It is quite easy; and there is only one way of doing it, for we do not count as different the arrangements obtained by merely turning round the square and reflecting it in a mirror. Now if we wish to make a magic square of the 16 numbers, 1 to 16, there are just 880 different ways of doing it, again not counting reversals and reflections. This has been finally proved of recent years. But how many magic squares may be formed with the 25 numbers, 1 to 25, nobody knows, and we shall have to extend our knowledge in certain directions before we can hope to solve the puzzle. But it is surprising to find that exactly 174,240 such squares may be formed of one particular restricted kind only--the bordered square, in which the inner square of nine cells is itself magic. And I have shown how this number may be at once doubled by merely converting every bordered square--by a simple rule--into a non-bordered one. Then vain attempts have been made to construct a magic square by what is called a "knight's tour" over the chess-board, numbering each square that the knight visits in succession, 1, 2, 3, 4, etc.; and it has
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  



Top keywords:
square
 

numbers

 

diagonal

 
bordered
 

simple

 
length
 

squares

 

formed

 

knight

 

corner


construct

 
proved
 

recent

 

circle

 

confronted

 

puzzle

 

directions

 

extend

 

knowledge

 
finally

squaring

 

reflecting

 
mirror
 

surprising

 

reflections

 

reversals

 

counting

 
problem
 

called

 
attempts

succession

 

numbering

 

visits

 

restricted

 
doubled
 

converting

 

number

 
arrangements
 

impossible

 

staring


person

 
diameter
 

circumference

 

suggest

 

distance

 

perform

 

cranks

 

measure

 

window

 

diagonals