FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
d by the poles in the one or the other direction, was the circumstance, that upon changing the motion, the direction of the wires in the approaching half of the spiral was changed also. The effects, curious as they appear when witnessed, are immediately referable to the action of single wires (40. 109.). 113. Although the experiments with the revolving plate, wires, and plates of metal, were first successfully made with the large magnet belonging to the Royal Society, yet they were all ultimately repeated with a couple of bar magnets two feet long, one inch and a half wide, and half an inch thick; and, by rendering the galvanometer (87.) a little more delicate, with the most striking results. Ferro-electro-magnets, as those of Moll, Henry, &c. (57.), are very powerful. It is very essential, when making experiments on different substances, that thermo-electric effects (produced by contact of the fingers, &c.) be avoided, or at least appreciated and accounted for; they are easily distinguished by their permanency, and their independence of the magnets, or of the direction of the motion. 114. The relation which holds between the magnetic pole, the moving wire or metal, and the direction of the current evolved, i.e. _the law_ which governs the evolution of electricity by magneto-electric induction, is very simple, although rather difficult to express. If in fig. 24, PN represent a horizontal wire passing by a marked magnetic pole, so that the direction of its motion shall coincide with the curved line proceeding from below upwards; or if its motion parallel to itself be in a line tangential to the curved line, but in the general direction of the arrows; or if it pass the pole in other directions, but so as to cut the magnetic curves[A] in the same general direction, or on the same side as they would be cut by the wire if moving along the dotted curved line;--then the current of electricity in the wire is from P to N. If it be carried in the reverse directions, the electric current will be from N to P. Or if the wire be in the vertical position, figured P' N', and it be carried in similar directions, coinciding with the dotted horizontal curve so far, as to cut the magnetic curves on the same side with it, the current will be from P' to N'. If the wire be considered a tangent to the curved surface of the cylindrical magnet, and it be carried round that surface into any other position, or if the magnet itself be revolved on
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

direction

 

curved

 

magnetic

 

motion

 

current

 

magnet

 
electric
 

carried

 

magnets

 
directions

effects

 

surface

 

horizontal

 

electricity

 
general
 

dotted

 
position
 

curves

 

moving

 

experiments


difficult
 

cylindrical

 

express

 

revolved

 

evolved

 
governs
 

induction

 

magneto

 

evolution

 

simple


coincide

 

coinciding

 

arrows

 

tangential

 

similar

 
vertical
 

figured

 
parallel
 

upwards

 

passing


marked

 
represent
 

reverse

 

proceeding

 

considered

 

tangent

 
thermo
 

belonging

 
successfully
 
revolving