FREE BOOKS

Author's List




PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  
[A] Annales de Chimie, tom. xxiv. p. 93. [B] Ibid. tom. xxiii. p. 440; tom. xxiv. p. 380. [C] Ibid. tom. xxiv. p. 383. 610. M. Doebereiner refers the effect entirely to an electric action. He considers the platina and hydrogen as forming a voltaic element of the ordinary kind, in which the hydrogen, being very highly positive, represents the zinc of the usual arrangement, and like it, therefore, attracts oxygen and combines with it[A]. [A] tom. xxiv. pp. 94, 95. Also Bibliotheque Universelle, tom. xxiv. p. 54. 611. In the two excellent experimental papers by MM. Dulong and Thenard[A], those philosophers show that elevation of temperature favours the action, but does not alter its character; Sir Humphry Davy's incandescent platina wire being the same phenomenon with Doebereiner's spongy platina. They show that _all_ metals have this power in a greater or smaller degree, and that it is even possessed by such bodies as charcoal, pumice, porcelain, glass, rock crystal, &c., when their temperatures are raised; and that another of Davy's effects, in which oxygen and hydrogen had combined slowly together at a heat below ignition, was really dependent upon the property of the heated glass, which it has in common with the bodies named above. They state that liquids do not show this effect, at least that mercury, at or below the boiling point, has not the power; that it is not due to porosity; that the same body varies very much in its action, according to its state; and that many other gaseous mixtures besides oxygen and hydrogen are affected, and made to act chemically, when the temperature is raised. They think it probable that spongy platina acquires its power from contact with the acid evolved during its reduction, or from the heat itself to which it is then submitted. [A] Annales de Chimie, tom. xxiii. p. 440; tom. xxiv. p, 380. 612. MM. Dulong and Thenard express themselves with great caution on the theory of this action; but, referring to the decomposing power of metals on ammonia when heated to temperatures not sufficient alone to affect the alkali, they remark that those metals which in this case are most efficacious, are the least so in causing the combination of oxygen and hydrogen; whilst platina, gold, &c., which have least power of decomposing ammonia, have most power of combining the elements of water:--from which they are led to believe, that amongst gases, some tend to _unite_ under t
PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  



Top keywords:
hydrogen
 

platina

 

oxygen

 

action

 

metals

 

Dulong

 

decomposing

 
ammonia
 

Thenard

 
bodies

temperature

 

spongy

 

Doebereiner

 

effect

 

Annales

 
Chimie
 

heated

 
raised
 

temperatures

 

varies


common

 
porosity
 

affected

 

mercury

 

mixtures

 

gaseous

 

boiling

 
liquids
 

combination

 

whilst


combining
 

causing

 
alkali
 

remark

 

efficacious

 

elements

 

affect

 

evolved

 

reduction

 

contact


acquires

 

chemically

 

probable

 
property
 
caution
 

theory

 
referring
 

sufficient

 

submitted

 

express