FREE BOOKS

Author's List




PREV.   NEXT  
|<   490   491   492   493   494   495   496   497   498   499   500   501   502   503   504   505   506   507   508   509   510   511   512   513   514  
515   516   517   518   519   520   521   522   523   524   525   526   527   528   529   530   531   532   533   534   535   536   537   538   539   >>   >|  
all and a conductor (1566.), being here also called into play. * * * * * 1603. The general analogy and, I think I may say, identity of action found to exist as to insulation and conduction (1338. 1561.) when bodies, the best and the worst in the classes of insulators or conductors, were compared, led me to believe that the phenomena of _convection_ in badly conducting media were not without their parallel amongst the best conductors, such even as the metals. Upon consideration, the cones produced by Davy[A] in fluid metals, as mercury and tin, seemed to be cases in point, and probably also the elongation of the metallic medium through which a current of electricity was passing, described by Ampere (1113)[B]; for it is not difficult to conceive, that the diminution of convective effect, consequent upon the high conducting power of the metallic media used in these experiments, might be fully compensated for by the enormous quantity of electricity passing. In fact, it is impossible not to expect _some_ effect, whether sensible or not, of the kind in question, when such a current is passing through a fluid offering a sensible resistance to the passage of the electricity, and, thereby, giving proof of a certain degree of insulating power (1328.). [A] Philosophical Transactions, 1823, p. 155. [B] Bibliotheque Universelle, xxi, 417. 1604. I endeavoured to connect the convective currents in air, oil of turpentine, &c. and those in metals, by intermediate cases, but found this not easy to do. On taking bodies, for instance, which, like water, adds, solutions, fused salts or chlorides, &c., have intermediate conducting powers, the minute quantity of electricity which the common machine can supply (371. 861.) is exhausted instantly, so that the cause of the phenomenon is kept either very low in intensity, or the instant of time during which the effect lasts is so small, that one cannot hope to observe the result sought for. If a voltaic battery be used, these bodies are all electrolytes, and the evolution of gas, or the production of other changes, interferes and prevents observation of the effect required. 1605. There are, nevertheless, some experiments which illustrate the connection. Two platina wires, forming the electrodes of a powerful voltaic battery, were placed side by side, near each other, in distilled water, hermetically sealed up in a strong glass tube, some minute vegetabl
PREV.   NEXT  
|<   490   491   492   493   494   495   496   497   498   499   500   501   502   503   504   505   506   507   508   509   510   511   512   513   514  
515   516   517   518   519   520   521   522   523   524   525   526   527   528   529   530   531   532   533   534   535   536   537   538   539   >>   >|  



Top keywords:

electricity

 

effect

 

bodies

 

metals

 
conducting
 
passing
 

metallic

 

current

 

battery

 

voltaic


convective
 

intermediate

 
minute
 
quantity
 

experiments

 
conductors
 

sealed

 

common

 
machine
 
powers

hermetically

 

chlorides

 
supply
 

distilled

 
instantly
 
exhausted
 

solutions

 
vegetabl
 
turpentine
 

connect


currents
 
strong
 

instance

 

taking

 

connection

 

illustrate

 

sought

 

platina

 

observe

 

result


electrolytes
 

interferes

 

prevents

 
observation
 
evolution
 

production

 

intensity

 

powerful

 

phenomenon

 
instant