FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  
hematical points, in order to give a termination to bodies; and others eluded the force of this reasoning by a heap of unintelligible cavils and distinctions. Both these adversaries equally yield the victory. A man who hides himself, confesses as evidently the superiority of his enemy, as another, who fairly delivers his arms. Thus it appears, that the definitions of mathematics destroy the pretended demonstrations; and that if we have the idea of indivisible points, lines and surfaces conformable to the definition, their existence is certainly possible: but if we have no such idea, it is impossible we can ever conceive the termination of any figure; without which conception there can be no geometrical demonstration. But I go farther, and maintain, that none of these demonstrations can have sufficient weight to establish such a principle, as this of infinite divisibility; and that because with regard to such minute objects, they are not properly demonstrations, being built on ideas, which are not exact, and maxims, which are not precisely true. When geometry decides anything concerning the proportions of quantity, we ought not to look for the utmost precision and exactness. None of its proofs extend so far. It takes the dimensions and proportions of figures justly; but roughly, and with some liberty. Its errors are never considerable; nor would it err at all, did it not aspire to such an absolute perfection. I first ask mathematicians, what they mean when they say one line or surface is EQUAL to, or GREATER or LESS than another? Let any of them give an answer, to whatever sect he belongs, and whether he maintains the composition of extension by indivisible points, or by quantities divisible in infinitum. This question will embarrass both of them. There are few or no mathematicians, who defend the hypothesis of indivisible points; and yet these have the readiest and justest answer to the present question. They need only reply, that lines or surfaces are equal, when the numbers of points in each are equal; and that as the proportion of the numbers varies, the proportion of the lines and surfaces is also varyed. But though this answer be just, as well as obvious; yet I may affirm, that this standard of equality is entirely useless, and that it never is from such a comparison we determine objects to be equal or unequal with respect to each other. For as the points, which enter into the composition of any line or sur
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  



Top keywords:

points

 

demonstrations

 
indivisible
 

answer

 

surfaces

 

question

 

objects

 

termination

 

proportion

 

composition


mathematicians
 

numbers

 

proportions

 

liberty

 

GREATER

 

justly

 

roughly

 

aspire

 

absolute

 

considerable


surface

 

perfection

 

errors

 

affirm

 

standard

 

equality

 

obvious

 

varyed

 

useless

 
respect

comparison

 
determine
 

unequal

 

varies

 

embarrass

 

infinitum

 

divisible

 

maintains

 

extension

 

quantities


figures

 

present

 

justest

 

defend

 

hypothesis

 

readiest

 

belongs

 
definitions
 

mathematics

 

destroy