FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
e diameter, lying nearly level in the ground, in ten hours. In ordinary aqueducts, for supplying water, and not for drainage, it is desirable to have a high pressure upon the pipes to ensure a rapid flow; but in drainage, a careful distinction must be made between velocity induced by gravitation, and velocity induced by pressure. If induced by the former merely, the pipe through which the water is swiftly running, if not quite full, may still receive water at every joint, while, if the velocity be induced by pressure, the pipe must be already full. It can then receive no more, and must lose water at the joints, and wet the land through which it passes, instead of draining it. So that although we should find that the mains might carry a vast quantity of water admitted by minor drains from high elevations, yet we should bear in mind, that drains when full can perform no ordinary office of drainage. If there is more than the pressure of four feet head of water behind; the pipes, if they passed through a pond of water, at four feet deep, must lose and not receive water at the joints. The capacity of a pipe to convey water depends, then, not only on its size, but on its inclination or fall--a pipe running down a considerable descent having much greater capacity than one of the same size lying nearly level. This fact should be borne in mind even in laying single drains; for it is obvious that if the drain lie along a sandy plain, for instance, extending down a springy hill-side, and then, as is usually the case, along a lower plain again, to its outlet at some stream, it may collect as much water as will fill it before it reaches the lower level. Its stream rushes swiftly down the descent, and when it reaches the plain, there is not sufficient fall to carry it away by its natural gravitation. It will still rush onward to its outlet, urged by the pressure from behind; but, with such pressure, it will, as we have seen, instead of draining the land, suffuse it with water. FRICTION, as has already been suggested, is an element that much interferes with exact calculations as to the relative capacity of water-pipes of various dimensions, and this depends upon several circumstances, such as smoothness, and exactness of form, and directness. The smoother, the more regular in form, and the straighter the drain, the more water will it convey. Thus, in some recent English experiments, "it was found that, with pipes of
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:

pressure

 

induced

 

receive

 

capacity

 

drains

 

velocity

 

drainage

 

draining

 

reaches

 

descent


outlet

 

stream

 

convey

 

depends

 

gravitation

 

running

 

swiftly

 

ordinary

 
joints
 

circumstances


regular

 
collect
 

straighter

 

recent

 

instance

 

relative

 

smoother

 

extending

 

dimensions

 
springy

suffuse
 

FRICTION

 

suggested

 

experiments

 
exactness
 
element
 
directness
 

onward

 
English
 

rushes


smoothness

 

calculations

 

natural

 

sufficient

 

interferes

 

office

 

passes

 

distinction

 

ground

 

diameter