FREE BOOKS

Author's List




PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>  
g and guiding influence of those reasons and causes which were hypostatised in his ideal 'Forms.' In modern science, the conception of the inertia, or resistance to change, of matter is complex. In part, it contains a corollary from the law of causation: A body cannot change its state in respect of rest or motion without a sufficient cause. But, in part, it contains generalisations from experience. One of these is that there is no such sufficient cause resident in any body, and that therefore it will rest, or continue in motion, so long as no external cause of change acts upon it. The other is that the effect which the impact of a body in motion produces upon the body on which it impinges depends, other things being alike, on the relation of a certain quality of each which is called 'mass.' Given a cause of motion of a certain value, the amount of motion, measured by distance travelled in a certain time, which it will produce in a given quantity of matter, say a cubic inch, is not always the same, but depends on what that matter is--a cubic inch of iron will go faster than a cubic inch of gold. Hence, it appears, that since equal amounts of motion have, _ex hypothesi_, been produced, the amount of motion in a body does not depend on its speed alone, but on some property of the body. To this the name of 'mass' has been given. And since it seems reasonable to suppose that a large quantity of matter, moving slowly, possesses as much motion as a small quantity moving faster, 'mass' has been held to express 'quantity of matter.' It is further demonstrable that, at any given time and place, the relative mass of any two bodies is expressed by the ratio of their weights. [Sidenote: Mechanical theory of heat.] When all these great truths respecting molar motion, or the movements of visible and tangible masses, had been shown to hold good not only of terrestrial bodies, but of all those which constitute the visible universe, and the movements of the macrocosm had thus been expressed by a general mechanical theory, there remained a vast number of phenomena, such as those of light, heat, electricity, magnetism, and those of the physical and chemical changes, which do not involve molar motion. Newton's corpuscular theory of light was an attempt to deal with one great series of these phenomena on mechanical principles, and it maintained its ground until, at the beginning of the nineteenth century, the undulatory theory proved its
PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>  



Top keywords:
motion
 

matter

 

theory

 

quantity

 
change
 
bodies
 

mechanical

 
expressed
 

faster

 

depends


amount

 

movements

 
visible
 

moving

 
sufficient
 
phenomena
 

possesses

 

suppose

 
slowly
 

reasonable


Mechanical

 

weights

 

demonstrable

 
relative
 

Sidenote

 
undulatory
 

century

 

proved

 

express

 

chemical


principles

 

maintained

 
physical
 

electricity

 

magnetism

 

ground

 
series
 
involve
 

attempt

 

Newton


corpuscular

 

number

 

beginning

 

masses

 
respecting
 

nineteenth

 
tangible
 

terrestrial

 
general
 

remained