FREE BOOKS

Author's List




PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>  
g and guiding influence of those reasons and causes which were hypostatised in his ideal 'Forms.' In modern science, the conception of the inertia, or resistance to change, of matter is complex. In part, it contains a corollary from the law of causation: A body cannot change its state in respect of rest or motion without a sufficient cause. But, in part, it contains generalisations from experience. One of these is that there is no such sufficient cause resident in any body, and that therefore it will rest, or continue in motion, so long as no external cause of change acts upon it. The other is that the effect which the impact of a body in motion produces upon the body on which it impinges depends, other things being alike, on the relation of a certain quality of each which is called 'mass.' Given a cause of motion of a certain value, the amount of motion, measured by distance travelled in a certain time, which it will produce in a given quantity of matter, say a cubic inch, is not always the same, but depends on what that matter is--a cubic inch of iron will go faster than a cubic inch of gold. Hence, it appears, that since equal amounts of motion have, _ex hypothesi_, been produced, the amount of motion in a body does not depend on its speed alone, but on some property of the body. To this the name of 'mass' has been given. And since it seems reasonable to suppose that a large quantity of matter, moving slowly, possesses as much motion as a small quantity moving faster, 'mass' has been held to express 'quantity of matter.' It is further demonstrable that, at any given time and place, the relative mass of any two bodies is expressed by the ratio of their weights. [Sidenote: Mechanical theory of heat.] When all these great truths respecting molar motion, or the movements of visible and tangible masses, had been shown to hold good not only of terrestrial bodies, but of all those which constitute the visible universe, and the movements of the macrocosm had thus been expressed by a general mechanical theory, there remained a vast number of phenomena, such as those of light, heat, electricity, magnetism, and those of the physical and chemical changes, which do not involve molar motion. Newton's corpuscular theory of light was an attempt to deal with one great series of these phenomena on mechanical principles, and it maintained its ground until, at the beginning of the nineteenth century, the undulatory theory proved its
PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>  



Top keywords:
motion
 

matter

 

theory

 
quantity
 

change

 
bodies
 

mechanical

 

expressed

 

faster

 

depends


amount

 
movements
 

visible

 

moving

 

sufficient

 

phenomena

 

possesses

 

suppose

 

slowly

 
reasonable

Mechanical

 

weights

 
demonstrable
 

relative

 

Sidenote

 

undulatory

 

century

 
proved
 

express

 
chemical

principles

 

maintained

 

physical

 

electricity

 
magnetism
 

ground

 

series

 
involve
 

attempt

 

Newton


corpuscular

 
number
 

beginning

 

masses

 

respecting

 

nineteenth

 

tangible

 

terrestrial

 

general

 

remained