FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
lt, and [mu] for the coefficient of friction, Q/P = [epsilon]^{[mu]^{[theta]}}, or for a given arc of contact Q = [kappa]P, where [kappa] depends only on the coefficient of friction, increasing as [mu] increases, and _vice versa_. Hence, for the belt to remain at rest with two fixed weights, Q and P, it is necessary that the coefficient of friction should be exactly constant. But this constancy cannot be obtained. The coefficient of friction varies with the condition of lubrication of the surface of the pulley, which alters during the running and with every change in the velocity and temperature of the rubbing surfaces. Consequently, in a dynamometer in this simple form more or less violent oscillations of the weights are set up, which cannot be directly controlled without impairing the accuracy of the dynamometer. Professors Ayrton and Perry have recently used a modification of this dynamometer, in which the part of the cord nearest to P is larger and rougher than the part nearest to Q. The effect of this is that when the coefficients of friction increase, Q rises a little, and diminishes the amount of the rougher cord in contact, and _vice versa_. Thus reducing the friction, notwithstanding the increase of the coefficient. This is very ingenious, and the only objection to it, if it is an objection, is that only a purely empirical adjustment of the friction can be obtained, and that the range of the adjustment cannot be very great. If in place of one of the weights we use a spring balance, as in Figs. 2 and 3, we get a dynamometer which automatically adjusts itself to changes in the coefficient of friction. [Illustration: FIG.2 FIG.3] For any increase in the coefficient, the spring in Fig. 2 lengthens, Q increases, and the frictional resistance on the surface of the pulley increases, both in consequence of the increase of Q, which increases the pressure on the pulley, and of the increase of the coefficient of friction. Similarly for any increase of the coefficient of friction, the spring in Fig. 3 shortens, P diminishes, and the friction on the surface of the pulley diminishes so far as the diminution of P diminishes the normal pressure, but on the whole increases in consequence of the increase of the coefficient of friction. The value of the friction on the surface of the pulley, however, is more constant for a given variation of the frictional coefficient in Fig. 3 than in Fig. 2, and the variation of the
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

friction

 
coefficient
 

increase

 
pulley
 

increases

 

surface

 
dynamometer
 

diminishes

 

weights

 

spring


obtained

 
contact
 

objection

 

adjustment

 

nearest

 

rougher

 

variation

 
pressure
 

consequence

 

frictional


constant

 

amount

 

empirical

 

reducing

 

ingenious

 
notwithstanding
 
purely
 

normal

 
diminution
 

Illustration


lengthens
 

resistance

 

shortens

 

balance

 
Similarly
 

adjusts

 

automatically

 

constancy

 
varies
 

condition


lubrication

 
change
 

running

 

alters

 

epsilon

 
depends
 

increasing

 
remain
 

velocity

 

temperature