FREE BOOKS

Author's List




PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   >>   >|  
alk or limestone is "burned," i.e. heated in a kiln until its carbonic acid has been driven off, it yields pure lime. This slakes violently with water, giving slaked lime, which can be made into a smooth paste with water and mixed with sand to form common mortar. The setting of the mortar is due to the drying of the lime (a purely physical phenomenon, no chemical action occurring between the lime and the sand). The function of the sand is simply that of a diluent to prevent undue shrinkage and cracking in drying. Subsequent hardening of the mortar is caused by the gradual absorption of carbonic acid from the air by the lime, a skin of carbonate of lime being formed; but the action is superficial. Mortar made from pure or "fat" lime cannot withstand the action of water, and is only used for work done above water-level. If, however, such "fat" lime is mixed in the presence of water, not with sand but with silica in an active form, i.e. amorphous and (generally) hydrated, or with a silicate containing silica in an active condition, it will unite with the silica and form a silicate of lime capable of resisting the action of water. The mixture of the lime and active silica or silicate is a pozzuolanic cement. The simplest of all pozzuolanic cements would be a mixture of pure lime and hydrated silica, but though the latter is prepared artificially for various purposes, it is too expensive to be used as a cement material. A similar obstacle lies in the way of using a certain native form of active silica, viz. kieselguhr, for it is too valuable as an absorbent of nitroglycerine, for the manufacture of dynamite, to be available for making pozzuolanic cement. There are, however, many silicious substances occurring abundantly in nature which can thus be used. They are mostly of volcanic origin, and include pumice, tufa, santorin earth, trass and pozzuolana itself. The following analyses show their general composition:-- +-----------------------------+-----------+-----------+-----------+ | |Neapolitan | Roman | | | | Pozzuo- | Pozzuo- | Trass | | | lana | lana |(per cent) | | |(per cent) |(per cent) | | +-----------------------------+-----------+-----------+-----------| | Soluble silica (SiO2) | 27.80 | 32.64 | 19.32 | | Insoluble silicious resid
PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   >>   >|  



Top keywords:

silica

 

active

 

action

 

pozzuolanic

 
silicate
 
cement
 

mortar

 

drying

 

hydrated

 

silicious


occurring

 

mixture

 

carbonic

 

Pozzuo

 

native

 

absorbent

 

Insoluble

 
kieselguhr
 

valuable

 

artificially


nitroglycerine
 
purposes
 

expensive

 

prepared

 

material

 

obstacle

 

similar

 
abundantly
 

analyses

 

pozzuolana


Soluble

 
Neapolitan
 

general

 
composition
 

substances

 

nature

 
dynamite
 
making
 

cements

 

santorin


pumice

 

include

 

volcanic

 

origin

 

manufacture

 

purely

 
physical
 

setting

 
common
 

smooth