FREE BOOKS

Author's List




PREV.   NEXT  
|<   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254  
255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   >>   >|  
present day the nautical ephemerides contain, several years in advance, the indications of the times of the eclipses and reappearances of Jupiter's satellites. Calculation is as precise as direct observation. Influenced by an exaggerated deference, modesty, timidity, France in the eighteenth century surrendered to England the exclusive privilege of constructing her astronomical instruments. Thus, when Herschel was prosecuting his beautiful observations on the other side of the Channel, we had not even the means of verifying them. Fortunately for the scientific honor of our country, mathematical analysis also is a powerful instrument. The great Laplace, from the retirement of his study, foresaw, and accurately predicted in advance, what the excellent astronomer of Windsor would soon behold with the largest telescopes existing. When, in 1610, Galileo directed toward Saturn a lens of very low power which he had just constructed with his own hands, although he perceived that the planet was not a globe, he could not ascertain its real form. The expression "tri-corporate," by which the illustrious Florentine designated the appearance of the planet, even implied a totally erroneous idea of its structure. At the present day every one knows that Saturn consists of a globe about nine hundred times greater than the earth, and of a ring. This ring does not touch the ball of the planet, being everywhere removed from it to a distance of twenty thousand (English) miles. Observation indicates the breadth of the ring to be fifty-four thousand miles. The thickness certainly does not exceed two hundred and fifty miles. With the exception of a black streak which divides the ring throughout its whole contour into two parts of unequal breadth and of different brightness, this strange colossal bridge without foundations had never offered to the most experienced or skillful observers either spot or protuberance adapted for deciding whether it was immovable or endowed with a motion of rotation. Laplace considered it to be very improbable, if the ring was stationary, that its constituent parts should be capable of resisting by mere cohesion the continual attraction of the planet. A movement of rotation occurred to his mind as constituting the principle of stability, and he deduced the necessary velocity from this consideration. The velocity thus found was exactly equal to that which Herschel subsequently derived from a series of extremely deli
PREV.   NEXT  
|<   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254  
255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   >>   >|  



Top keywords:

planet

 

Saturn

 
thousand
 

velocity

 

hundred

 

rotation

 

advance

 
present
 

breadth

 

Laplace


Herschel

 

streak

 

exceed

 
divides
 
exception
 

contour

 

English

 
greater
 

consists

 

Observation


thickness
 

unequal

 
twenty
 

removed

 

distance

 

occurred

 

movement

 

constituting

 

principle

 
attraction

resisting

 

capable

 

cohesion

 
continual
 

stability

 
deduced
 
derived
 

subsequently

 

series

 
extremely

consideration

 
constituent
 
offered
 

experienced

 

skillful

 

observers

 

foundations

 
strange
 
brightness
 

colossal