FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>  
s, etc. Now, if we construct three cells (or any other number), so faced that the three, collectively, will be acted upon by all the colors, and arrange them around the light to be tested, at equal distances therefrom, each cell will produce a current corresponding to the colored rays suited to it, and all together will produce a current corresponding to all the rays emitted by the light, no matter what the proportions of the different colors may be. The three currents may act upon the same index, but each should have its own coil, not only for the sake of being able to join or to isolate their influences upon the index, but also to avoid the resistances of the other cells. If a solid transparent conductor of electricity could be found which could be thick enough for practical use and yet would transmit all the rays perfectly, i.e., transmit white light unchanged, that would be still better. I have not yet found a satisfactory conductor of that kind, but I think the plan stated will answer the same purpose. This portion of my system I have not practically tested, but it appears to me to give good promise of removing the color stumbling-block, which has so long defied all efforts to remove it, and I therefore offer it for your consideration. _Photo-electric regulator_.--My regulator consists of a current-generating cell arranged in front of a light, say an electric lamp, whose light represents the varying strength of the current which supports it. The current produced in the cell by this light flows through an electro-magnetic apparatus by means of which mechanical movement is produced, and this motion is utilized for changing resistances, actuating a valve, rotating brushes, moving switches, levers, or other devices. This has been constructed on a small scale, and operates well, and I think it is destined to be largely used, as a most sensitive, simple, and perfect regulator for currents, lights, dynamos, motors, etc., etc., whether large or small. In conclusion, I would say that the investigation of the physical properties of selenium still offers a rare opportunity for making very important discoveries. But candor compels me to add that whoever undertakes the work will find it neither an easy nor a short one. My own experience would enable me to describe to you scores of curious experiments and still more curious and suggestive results, but lack of time prevents my giving more than this very incomplete outline of my
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>  



Top keywords:

current

 

regulator

 

colors

 
currents
 
conductor
 

resistances

 

tested

 

produced

 
curious
 

transmit


electric
 

produce

 

strength

 

destined

 

largely

 

supports

 

operates

 

moving

 
movement
 

motion


utilized

 

mechanical

 

apparatus

 

changing

 

actuating

 

levers

 

devices

 

constructed

 

switches

 

magnetic


rotating

 

brushes

 
electro
 

opportunity

 

experience

 

enable

 

describe

 
undertakes
 
scores
 

giving


incomplete

 
outline
 

prevents

 

experiments

 
suggestive
 
results
 

conclusion

 

investigation

 

motors

 

simple