FREE BOOKS

Author's List




PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  
is =amygdalin=. Amygdalin was first discovered in 1830, and was one of the first substances to be recognized as a glucoside. It is found in large quantities in bitter almonds and in the kernels of apricots, peaches, and plums; also in the seeds of apples, etc., in fact in practically all the seeds of plants of the Rose family. It is the mother substance for "oil of bitter almonds," which is widely used as a flavoring extract. Amygdalin has been the object of very extensive studies, and even yet the exact nature of the linkage between its constituent groups is not certainly known. When completely hydrolyzed, it yields two molecules of glucose and one each of benzaldehyde and hydrocyanic acid. Recent studies indicate that the two sugar molecules are separately united to the other constituents, rather than united with each other in the disaccharide relationship. In other words, amygdalin is a true _glucoside_ rather than a _maltoside_. This is indicated by the fact that when submitted to the action of all known hydrolyzing agents which affect it, it has never been found to yield maltose as one of the products of hydrolysis. Furthermore, the rate of hydrolysis of amygdalin is not affected by the presence of maltose; and the segregation of the two glucose molecules is accomplished by enzymes other than maltase, which is the only enzyme which is known to break up a maltose molecule. Since the exact nature of the linkage is not known, it is customary and convenient to indicate the unit groups as linked together in the following order: C_{6}H_{11}O_{5}-O-C_{6}H_{10}O_{4}-O-C_{6}H_{5}.CH-C[trb]N (1) (2) (3)(4) A study of the hydrolysis reactions of amygdalin shows that there are three different linkages in the molecule which may be broken by the simple interpolation of a single molecule of water and a fourth which may be split by a different type of hydrolysis, namely, the C[trb]N linkage. These are indicated by the numbers below the corresponding portion of the formula above. Most hydrolyzing agents break the molecule first at (1), yielding one molecule of glucose and one of mandelo nitrile glucoside (see page 77). The next step usually breaks the latter at the point indicated by (2), yielding glucose and benzaldehyde cyanhydrin, or mandelo nitrile. The latter in turn breaks down at (3) into benzaldehyde and HCN. But when amygdalin is boiled with concentrate
PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  



Top keywords:

amygdalin

 
molecule
 

hydrolysis

 

glucose

 

molecules

 

glucoside

 
linkage
 
benzaldehyde
 

maltose

 
hydrolyzing

nature

 

united

 

studies

 

groups

 

mandelo

 

breaks

 

agents

 

almonds

 
Amygdalin
 

yielding


nitrile

 

bitter

 

convenient

 

linked

 
reactions
 

cyanhydrin

 
boiled
 

concentrate

 

single

 
fourth

interpolation

 

simple

 

linkages

 

broken

 

portion

 

formula

 
numbers
 

customary

 

maltoside

 

widely


flavoring

 

mother

 

substance

 

extract

 
object
 
constituent
 

extensive

 

family

 
quantities
 

kernels