FREE BOOKS

Author's List




PREV.   NEXT  
|<   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209  
210   211   212   213   214   215   216   217   >>  
nd to show how their abundance, shape and arrangement contribute to the strength or weakness of the specimen. The last of these constituents, cementite, is a definite chemical compound, an iron carbide, Fe_{3}C, containing 6.6 per cent. of carbon, so hard as to scratch glass, very brittle, and imparting these properties to hardened steel and cast iron. With this knowledge at his disposal the iron-maker can work with his eyes open and so regulate his melt as to cause these various constituents to crystallize out as he wants them to. Besides, he is no longer confined to the alloys of iron and carbon. He has ransacked the chemical dictionary to find new elements to add to his alloys, and some of these rarities have proved to possess great practical value. Vanadium, for instance, used to be put into a fine print paragraph in the back of the chemistry book, where the class did not get to it until the term closed. Yet if it had not been for vanadium steel we should have no Ford cars. Tungsten, too, was relegated to the rear, and if the student remembered it at all it was because it bothered him to understand why its symbol should be W instead of T. But the student of today studies his lesson in the light of a tungsten wire and relieves his mind by listening to a phonograph record played with a "tungs-tone" stylus. When I was assistant in chemistry an "analysis" of steel consisted merely in the determination of its percentage of carbon, and I used to take Saturday for it so I could have time enough to complete the combustion. Now the chemists of a steel works' laboratory may have to determine also the tungsten, chromium, vanadium, titanium, nickel, cobalt, phosphorus, molybdenum, manganese, silicon and sulfur, any or all of them, and be spry about it, because if they do not get the report out within fifteen minutes while the steel is melting in the electrical furnace the whole batch of 75 tons may go wrong. I'm glad I quit the laboratory before they got to speeding up chemists so. The quality of the steel depends upon the presence and the relative proportions of these ingredients, and a variation of a tenth of 1 per cent. in certain of them will make a different metal out of it. For instance, the steel becomes stronger and tougher as the proportion of nicked is increased up to about 15 per cent. Raising the percentage to 25 we get an alloy that does not rust or corrode and is non-magnetic, although both its component metals
PREV.   NEXT  
|<   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209  
210   211   212   213   214   215   216   217   >>  



Top keywords:

carbon

 

chemistry

 
laboratory
 

chemists

 

vanadium

 
instance
 

chemical

 

alloys

 

constituents

 

percentage


student

 

tungsten

 
silicon
 

sulfur

 
molybdenum
 
titanium
 
nickel
 

chromium

 

cobalt

 

phosphorus


manganese

 

stylus

 
assistant
 

analysis

 

played

 

listening

 
phonograph
 

record

 

consisted

 

complete


combustion

 

determination

 

Saturday

 

determine

 

stronger

 

tougher

 

nicked

 
proportion
 

increased

 

magnetic


metals

 

component

 
corrode
 
Raising
 

variation

 

ingredients

 

furnace

 
electrical
 

melting

 

report