FREE BOOKS

Author's List




PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  
make much, because we only want sufficient for our experiments; only, as you will see immediately, if I use too small a charge, the first portion of the gas will be mixed with the air already in the retort, and I should be obliged to sacrifice the first portion of the gas, because it would be so much diluted with air; the first portion must therefore be thrown away. You will find in this case, that a common spirit-lamp is quite sufficient for me to get the oxygen, and so we shall have two processes going on for its preparation. See how freely the gas is coming over from that small portion of the mixture. We will examine it, and see what are its properties. Now, in this way we are producing, as you will observe, a gas just like the one we had in the experiment with the battery, transparent, undissolved by water, and presenting the ordinary visible properties of the atmosphere. (As this first jar contains the air, together with the first portions of the oxygen set free during the preparation, we will carry it out of the way, and be prepared to make our experiments in a regular, dignified manner.) And, inasmuch as that power of making wood, wax, or other things burn, was so marked in the oxygen we obtained by means of the voltaic battery from water, we may expect to find the same property here. We will try it You see there is the combustion of a lighted taper in air, and here is its combustion in this gas [lowering the taper into the jar]. See how brightly and how beautifully it burns! You can also see more than this,--you will perceive it is a heavy gas, whilst the hydrogen would go up like a balloon, or even faster than a balloon, when not encumbered with the weight of the envelope. [Illustration: Fig. 22.] You may easily see that although we obtained from water twice as much in volume of the hydrogen as of oxygen, it does not follow that we have twice as much in weight--because one is heavy, and the other a very light gas. We have means of weighing gases or air; but without stopping to explain, that, let me just tell you what their respective weights are. The weight of a pint of hydrogen is three-quarters of a grain; the weight of the same quantity of oxygen is nearly twelve grains. This is a very great difference. The weight of a cubit foot of hydrogen is one-twelfth of an ounce; and the weight of a cubit foot of oxygen is one ounce and a third. And so on we might come to masses of matter which may be weighed in the
PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  



Top keywords:

weight

 
oxygen
 

portion

 
hydrogen
 

battery

 

sufficient

 
experiments
 

properties

 

combustion

 

obtained


balloon

 
preparation
 

twelve

 

whilst

 

perceive

 

faster

 

grains

 
brightly
 

lowering

 

twelfth


beautifully

 

difference

 

encumbered

 

Illustration

 

weights

 
respective
 
masses
 

weighing

 
matter
 

explain


stopping
 

easily

 

quantity

 

envelope

 
lighted
 

follow

 

volume

 

quarters

 
weighed
 

common


spirit

 
processes
 

examine

 

producing

 

mixture

 
freely
 

coming

 
charge
 

immediately

 

retort