FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
tem was the true line to proceed upon. It took me two years to produce a workable engine. My efforts have always been directed toward producing an engine giving at least one impulse every revolution and, if possible, to start without hand labor, just as a steam engine does. My first gas engine was running in 1878, and patented and exhibited in 1879. It was first exhibited at the Kilburn Royal Agricultural Society's show. This engine was self-starting, gave an ignition at every revolution, and ignited without external flame. It consisted of two cylinders, a motor, and a compressing pump, with a small intermediate reservoir. Suitable valves introduced the mixture of gas and air into the pump, and passed it when compressed from the reservoir to the motor cylinder. The igniting arrangement consisted of a platinum cage firmly fixed in a valve port; this cage was heated in the first instance by a flame of gas and air mixed; it became white hot in a few seconds, and then the engine was started by opening a valve. The platinum was kept hot by the heat derived from the successive ignitions, and, the engine once started, no further external flame was required. I have here one of these platinum cages which has been in use. Finding this method not well suited for small engines, I produced the engine which is at present in the market under my name. The cycle is different, and is designed for greater simplicity and the avoidance of back ignitions. It also consists of two cylinders, motor cylinder and the displace or charging cylinder. There is no intermediate reservoir. The displace crank leads the motor by a right angle, and takes into it the mixed charge of gas and air, in some cases taking air alone during the latter part of its stroke. The motor on the outstroke crosses V-shaped parts about from one-sixth to one-seventh from the out end, the displacer charge now passing into the motor cylinder, displacing the exhaust gases by these ports and filling the cylinder and the space at the end of it with the explosive mixture. The introduction of some air in advance of the charge serves the double purpose of cooling down the exhaust gases and preventing direct contact of the inflammable mixture with flame which may linger in the cylinder from the previous stroke. The instroke of the motor compresses the charge into the conical space at the end of the cylinder, and, when fully compressed, ignition is effected by means of the slide
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

engine

 
cylinder
 

charge

 
reservoir
 

mixture

 

platinum

 
ignitions
 

stroke

 

cylinders

 

ignition


consisted

 
compressed
 

displace

 

started

 

intermediate

 

external

 

exhaust

 
revolution
 

exhibited

 

consists


previous

 

linger

 

inflammable

 

charging

 

avoidance

 
market
 
present
 

effected

 
simplicity
 

compresses


instroke
 

greater

 

conical

 

designed

 
preventing
 

produced

 

passing

 

displacing

 
filling
 

displacer


outstroke

 
seventh
 

shaped

 

crosses

 

explosive

 
taking
 

cooling

 
direct
 

purpose

 

double