FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>  
1852, and the question is much complicated by other considerations. Lyell compares the growth of a volcano to that of an exogenous tree, which increases both in bulk and height by the external application of ligneous matter. Branches which shoot out from the trunk, first pierce the bark and proceed outwards, but if they die or are broken off they become inclosed in the body of the tree, forming knots in the wood. Similarly the volcano consists of a series of conical masses placed one above the other, while the minor cones, corresponding to the branches of the tree, first project, and then become buried again, as successive layers of lava flow around them. But volcanic action is very intermittent, the layers of lava and scoriae do not accumulate evenly and regularly like the layers of a tree. A violent paroxysmal outbreak may be succeeded by centuries of quiescence, or by a number of ordinary eruptions; or, again, several paroxysmal outbreaks may occur in succession. Moreover, each conical envelope of the mountain is made up of a number of distinct currents of lava, and showers of scoriae. "Yet we cannot fail to form the most exalted conception of the antiquity of this mountain, when we consider that its base is about 90 miles in circumference; so that it would require ninety flows of lava, each a mile in breadth at their termination, to raise the present foot of the volcano as much as the average height of one lava current." If all the minor cones now visible on Etna could be removed, with all the lava and scoriae which have ever proceeded from them, the mountain would appear scarcely perceptibly smaller. Other cones would reveal themselves beneath those now existing. Since the time when, in the Newer Pliocene period, the foundations of Etna were laid in the sea, it is quite impossible even to hint at the number of hundreds of thousands of years which have elapsed. We collected specimens of lava from various points around and upon the mountain. They presented a wonderful similarity of structure, and a mineralogist to whom they were shown remarked that they might almost all have come from the same crater, at the same time. A specimen of the lava of 1535 found near Borello, was ground by a lapidary until it was sufficiently transparent to be examined under the microscope by polarised light. It was found to contain good crystals of augite and olivine, well striated labradorite, and titaniferous iron ore. Elie de Beaumo
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>  



Top keywords:

mountain

 

scoriae

 

layers

 
number
 

volcano

 

conical

 

paroxysmal

 
height
 

Pliocene

 

impossible


period

 

foundations

 

current

 

visible

 

average

 

termination

 

present

 

removed

 
reveal
 

beneath


smaller

 
perceptibly
 

proceeded

 
scarcely
 

existing

 

polarised

 
microscope
 
examined
 

lapidary

 

ground


sufficiently
 
transparent
 

crystals

 

Beaumo

 
titaniferous
 

labradorite

 

augite

 
olivine
 

striated

 

Borello


points

 

breadth

 

presented

 
specimens
 

collected

 

thousands

 
hundreds
 
elapsed
 
wonderful
 

similarity