FREE BOOKS

Author's List




PREV.   NEXT  
|<   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358  
359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   >>   >|  
is exceedingly strong. But it is difficult and expensive to work up into various forms. Concrete has been avoided for making beams, slabs and thin walls, just because its deficiency in tensile strength doomed it to failure in such structures. But if a concrete slab be "reinforced" with a network of small steel rods on its under surface where the tensile stresses occur (see fig. 1) its strength will be enormously increased. Thus the one point of weakness in the concrete slab is overcome by the addition of steel in its simplest form, and both materials are used to their best advantage. The scientific and practical value of this idea was soon seized upon by various inventors and others, and the number of patented systems of combining steel with concrete is constantly increasing. Many of them are but slight modifications of the older systems, and no attempt will be made here to describe them in full. In England it is customary to allow the patentee of one or other system to furnish his own designs, but this is as much because he has gained the experience needed for success as because of any special virtue in this or that system. The majority of these systems have emanated from France, where steel concrete is largely used. America and Germany adopted them readily, and in England some very large structures have been erected with this material. [Illustration: FIG. 1.--Expanded Steel Concrete Slab.] [Illustration: FIG. 2. Expanded Metal. Section through Intersection.] The concrete itself should always be the very best quality, and Portland cement should be used on account of its superiority to all others. The aggregate should be the best obtainable and of different sizes, the stones being freshly crushed and screened to pass through a 7/8 in. ring. Very special care should be taken so to proportion the sand as to make a perfectly impervious mixture. The proportions generally used are 4 to 1 and 5 to 1 in the case of gravel concrete, or 1:2:4 or 1:2-1/2:6 in the case of broken stone concrete. But, generally speaking, in steel concrete the cost of the cement is but a small item of the whole expense, and it is worth while to be generous with it. If It is used in piles or structures where it is likely to be bruised the proportion of cement should be increased. The mixing and laying should all be done very thoroughly; the concrete should be rammed in position, and any old surface of concrete which has to be c
PREV.   NEXT  
|<   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358  
359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   >>   >|  



Top keywords:

concrete

 

systems

 
structures
 

cement

 
increased
 

system

 

proportion

 

generally

 

Expanded

 

special


Illustration

 
England
 

strength

 

Concrete

 
tensile
 
surface
 
superiority
 

obtainable

 

aggregate

 
account

screened
 

crushed

 

freshly

 

stones

 
avoided
 
material
 

erected

 

readily

 

quality

 

Portland


Section
 

Intersection

 

generous

 

expense

 

bruised

 

mixing

 

position

 

rammed

 

laying

 
perfectly

impervious

 
mixture
 
adopted
 

expensive

 

proportions

 
difficult
 

broken

 
speaking
 

gravel

 
strong